Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_1_a4, author = {M. Yu. Kokurin and A. I. Kozlov}, title = {On a~posteriori approximation of a~set of solutions to a~system of quadratic equations with the use of the {Newton} method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {53--65}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a4/} }
TY - JOUR AU - M. Yu. Kokurin AU - A. I. Kozlov TI - On a~posteriori approximation of a~set of solutions to a~system of quadratic equations with the use of the Newton method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 53 EP - 65 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a4/ LA - ru ID - SJVM_2014_17_1_a4 ER -
%0 Journal Article %A M. Yu. Kokurin %A A. I. Kozlov %T On a~posteriori approximation of a~set of solutions to a~system of quadratic equations with the use of the Newton method %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 53-65 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a4/ %G ru %F SJVM_2014_17_1_a4
M. Yu. Kokurin; A. I. Kozlov. On a~posteriori approximation of a~set of solutions to a~system of quadratic equations with the use of the Newton method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 53-65. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a4/
[1] Calabi E., “Linear systems of real quadratic forms. II”, Proc. Amer. Math. Soc., 84:3 (1982), 331–334 | DOI | MR | Zbl
[2] Bakhvalov N. C., Zhidkov N. P., Kobelkov G. M., Chislennye metody, BINOM, M., 2007
[3] Godunov S. K., Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997 | Zbl
[4] Kokurin M. Yu., “O krivoi P. A. Shirokova i teoremakh Khausdorfa i Dainsa”, Uchenye zapiski Kazanskogo gosudarstvennogo universiteta. Ser. Fiziko-matematicheskie nauki, 151, no. 4, 2009, 51–53 | Zbl
[5] Cowen C. C., Harel E., An Effective Algorithm for Computing the Numerical Range, Technical report, Purdue University, Department of Mathematics, West Lafayette, Indiana, 1995
[6] Morgan A., Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems, Prentice Hall, Englewood Cliffs, N.J., 1987 | MR | Zbl
[7] Koks D., Littl Dzh., O'Shi D., Idealy, mnogoobraziya i algoritmy. Vvedenie v vychislitelnye aspekty algebraicheskoi geometrii i kommutativnoi algebry, Mir, M., 2000
[8] Garloff J., Smith A. P., “Investigation of a subdivision based algorithm for solving systems of polynomial equations”, J. of Nonlinear Analysis, 47:1 (2001), 167–178 | DOI | MR | Zbl