Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2014_17_1_a3, author = {E. M. Vikhtenko and N. N. Maksimova and R. V. Namm}, title = {A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {43--52}, publisher = {mathdoc}, volume = {17}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/} }
TY - JOUR AU - E. M. Vikhtenko AU - N. N. Maksimova AU - R. V. Namm TI - A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2014 SP - 43 EP - 52 VL - 17 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/ LA - ru ID - SJVM_2014_17_1_a3 ER -
%0 Journal Article %A E. M. Vikhtenko %A N. N. Maksimova %A R. V. Namm %T A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2014 %P 43-52 %V 17 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/ %G ru %F SJVM_2014_17_1_a3
E. M. Vikhtenko; N. N. Maksimova; R. V. Namm. A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/
[1] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR
[2] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl
[3] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka. Sib. otd-nie, Novosibirsk, 1981 | Zbl
[4] Antipin A. S., Golikov A. I., Khoroshilova E. V., “Funktsiya chuvstvitelnosti, ee svoistva i prilozheniya”, Zhurn. vychisl. matem. i mat. fiziki, 51:12 (2011), 2126–2142 | MR | Zbl
[5] Khludnev A .M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010
[6] Mclean W., Strongly Elliptic Systems and Boundary Integral Equations, University Press, Cambridge, United Kingdom, 2000 | MR | Zbl
[7] Vu G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zhurn. vychisl. matem. i mat. fiziki, 46:1 (2006), 26–36 | MR | Zbl
[8] Vikhtenko E. M., Vu G., Namm R. V., “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zhurn. vychisl. matem. i mat. fiziki, 50:8 (2010), 1357–1366 | MR | Zbl
[9] Kushniruk N. N., Namm R. V., “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:4 (2009), 409–420 | Zbl
[10] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnoe neravenstv v mekhanike, Mir, M., 1986 | MR
[11] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR
[12] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR
[13] Kantorovich L. V., Akilov G. G., Funktsionalnyi analiz, Nevskii dialekt, SPb., 2004
[14] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1980 | MR