A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 43-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

Characteristic properties of a sensitivity functional in the variational inequalities mechanics on an example of a scalar Signorini problem are investigated. Applications of sensitivity functionals in duality schemes are considered.
@article{SJVM_2014_17_1_a3,
     author = {E. M. Vikhtenko and N. N. Maksimova and R. V. Namm},
     title = {A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {43--52},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/}
}
TY  - JOUR
AU  - E. M. Vikhtenko
AU  - N. N. Maksimova
AU  - R. V. Namm
TI  - A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 43
EP  - 52
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/
LA  - ru
ID  - SJVM_2014_17_1_a3
ER  - 
%0 Journal Article
%A E. M. Vikhtenko
%A N. N. Maksimova
%A R. V. Namm
%T A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 43-52
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/
%G ru
%F SJVM_2014_17_1_a3
E. M. Vikhtenko; N. N. Maksimova; R. V. Namm. A sensitivity functionals in variational inequalities of mechanics and their application to duality schemes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 43-52. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a3/

[1] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha. Teoriya i metody optimizatsii, Nauka, M., 1989 | MR

[2] Bertsekas D., Uslovnaya optimizatsiya i metody mnozhitelei Lagranzha, Radio i svyaz, M., 1987 | MR | Zbl

[3] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi optimizatsii, Nauka. Sib. otd-nie, Novosibirsk, 1981 | Zbl

[4] Antipin A. S., Golikov A. I., Khoroshilova E. V., “Funktsiya chuvstvitelnosti, ee svoistva i prilozheniya”, Zhurn. vychisl. matem. i mat. fiziki, 51:12 (2011), 2126–2142 | MR | Zbl

[5] Khludnev A .M., Zadachi teorii uprugosti v negladkikh oblastyakh, Fizmatlit, M., 2010

[6] Mclean W., Strongly Elliptic Systems and Boundary Integral Equations, University Press, Cambridge, United Kingdom, 2000 | MR | Zbl

[7] Vu G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zhurn. vychisl. matem. i mat. fiziki, 46:1 (2006), 26–36 | MR | Zbl

[8] Vikhtenko E. M., Vu G., Namm R. V., “O skhodimosti metoda Udzavy s modifitsirovannym funktsionalom Lagranzha v variatsionnykh neravenstvakh mekhaniki”, Zhurn. vychisl. matem. i mat. fiziki, 50:8 (2010), 1357–1366 | MR | Zbl

[9] Kushniruk N. N., Namm R. V., “Metod mnozhitelei Lagranzha dlya resheniya polukoertsitivnoi modelnoi zadachi s treniem”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:4 (2009), 409–420 | Zbl

[10] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnoe neravenstv v mekhanike, Mir, M., 1986 | MR

[11] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[12] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR

[13] Kantorovich L. V., Akilov G. G., Funktsionalnyi analiz, Nevskii dialekt, SPb., 2004

[14] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1980 | MR