A method of optimal real-time computation of a~linear system with retarded control
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 17-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of solving time-optimal control problems in real time has been developed. The method is based on the following: 1) approximating the attainability sets with a family of hyperplanes; 2) subdividing the whole computational process into the computations performed beforehand and those that are carried out while the control takes place; 3) integrating differential equations only over the displacement intervals of the control completion moment and the switching moments. The labor-intensive characteristic of the method is evaluated. Characteristics of calculating the optimal control of a linear system with retarded control in real time are considered. The results of modeling and numerical estimations are presented.
@article{SJVM_2014_17_1_a1,
     author = {V. M. Aleksandrov},
     title = {A method of optimal real-time computation of a~linear system with retarded control},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {17--30},
     publisher = {mathdoc},
     volume = {17},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a1/}
}
TY  - JOUR
AU  - V. M. Aleksandrov
TI  - A method of optimal real-time computation of a~linear system with retarded control
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2014
SP  - 17
EP  - 30
VL  - 17
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a1/
LA  - ru
ID  - SJVM_2014_17_1_a1
ER  - 
%0 Journal Article
%A V. M. Aleksandrov
%T A method of optimal real-time computation of a~linear system with retarded control
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2014
%P 17-30
%V 17
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a1/
%G ru
%F SJVM_2014_17_1_a1
V. M. Aleksandrov. A method of optimal real-time computation of a~linear system with retarded control. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 17 (2014) no. 1, pp. 17-30. http://geodesic.mathdoc.fr/item/SJVM_2014_17_1_a1/

[1] Pontryagin L. S., Boltyanskii V. G., Gamkrelidze R. V., Mischenko E. F., Matematicheskaya teoriya optimalnykh protsessov, Nauka, M., 1976

[2] Boltyanskii V. G., Matematicheskie metody optimalnogo upravleniya, Nauka, M., 1969 | MR

[3] Gabasov R., Kirillova F. M., Tyatyushkin A. I., Konstruktivnye metody optimizatsii. Ch. 1. Lineinye zadachi, Izd-vo “Universitetskoe”, Minsk, 1984 | MR | Zbl

[4] Balashevich N. V., Gabasov R., Kirillova F. M., “Chislennye metody programmnoi i pozitsionnoi optimizatsii lineinykh sistem upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 40:6 (2000), 838–859 | MR | Zbl

[5] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie v rezhime realnogo vremeni”, II Mezhd. konf. po problemam upravleniya, Plenarnye doklady, Izd-vo Instituta problem upravleniya, M., 2003, 20–47

[6] Gabasov R., Kirillova F. M., “Optimalnoe upravlenie i nablyudenie v realnom vremeni”, Izv. RAN. Teoriya i sistemy upravleniya, 2006, no. 3, 90–111 | MR | Zbl

[7] Aleksandrov V. M., “Vychislenie optimalnogo upravleniya v realnom vremeni”, Zhurn. vychisl. matem. i mat. fiziki, 52:10 (2012), 1778–1800 | Zbl

[8] Aleksandrov V. M., “Postroenie approksimiruyuschei konstruktsii dlya vychisleniya i realizatsii optimalnogo upravleniya v realnom vremeni”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 15:1 (2012), 1–19

[9] Aleksandrov V. M., “Priblizhennoe reshenie zadachi lineinogo bystrodeistviya”, Avtomatika i telemekhanika, 1998, no. 12, 3–13 | MR | Zbl

[10] Fedorenko R. P., Priblizhennoe reshenie zadach optimalnogo upravleniya, Nauka, M., 1978 | MR | Zbl

[11] Aleksandrov V. M., “Posledovatelnyi sintez optimalnogo po bystrodeistviyu upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 39:9 (1999), 1464–1478 | MR | Zbl

[12] Aleksandrov V. M., “Skhodimost metoda posledovatelnogo sinteza optimalnogo po bystrodeistviyu upravleniya”, Zhurn. vychisl. matem. i mat. fiziki, 39:10 (1999), 1650–1661 | MR | Zbl