An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 377-391.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm for solving the optimal nonlinear filtering problem by statistical modeling is proposed. It is based on reducing the filtration problem to the analysis of stochastic systems with terminating and branching paths, using a structure similarity of the Duncan–Mortensen–Zakai equations and the generalized Fokker–Planck–Kolmogorov equation. The solution of such problem of analysis can be approximately found by using numerical methods for solving stochastic differential equations and methods for modeling inhomogeneous Poisson flows.
@article{SJVM_2013_16_4_a6,
     author = {K. A. Rybakov},
     title = {An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {377--391},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a6/}
}
TY  - JOUR
AU  - K. A. Rybakov
TI  - An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 377
EP  - 391
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a6/
LA  - ru
ID  - SJVM_2013_16_4_a6
ER  - 
%0 Journal Article
%A K. A. Rybakov
%T An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 377-391
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a6/
%G ru
%F SJVM_2013_16_4_a6
K. A. Rybakov. An approximate solution of the optimal nonlinear filtering problem for stochastic differential systems by statistical modeling. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 377-391. http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a6/

[1] Averina T. A., “Novye algoritmy statisticheskogo modelirovaniya neodnorodnykh puassonovskikh ansamblei”, Zhurn. vychisl. matem. i mat. fiziki, 50:1 (2010), 16–23 | MR | Zbl

[2] Artemev V. M., Naumov A. O., Ienish G.-R., Rekonstruktsiya dinamicheskikh izobrazhenii v tomografii protsessov, Izd. tsentr BGU, Minsk, 2004

[3] Kazakov I. E., Artemev V. M., Bukhalev V. A., Analiz sistem sluchainoi struktury, Fizmatlit, M., 1993 | MR

[4] Kuznetsov D. F., Stokhasticheskie differentsialnye uravneniya: teoriya i praktika chislennogo resheniya, Izd-vo Politekhn. un-ta, SPb., 2010 | MR

[5] Liptser R. Sh., Shiryaev A. N., Statistika sluchainykh protsessov (nelineinaya filtratsiya i smezhnye voprosy), Nauka, M., 1974 | MR | Zbl

[6] M. S. Yarlykov (red.), Markovskaya teoriya otsenivaniya v radiotekhnike, Radiotekhnika, M., 2004

[7] Mikhailov G. A., Averina T. A., “Algoritm “maksimalnogo secheniya” v metode Monte-Karlo”, Doklady AN, 428:2 (2009), 163–165 | MR | Zbl

[8] B. S. Aleshin, K. K. Veremeenko, A. I. Chernomorskii (red.), Orientatsiya i navigatsiya podvizhnykh ob'ektov: sovremennye informatsionnye tekhnologii, Fizmatlit, M., 2006

[9] Panteleev A. V., Rudenko E. A., Bortakovskii A. S., Nelineinye sistemy upravleniya: opisanie, analiz i sintez, Vuzovskaya kniga, M., 2008

[10] Rybakov K. A., “Svedenie zadachi nelineinoi filtratsii k zadache analiza stokhasticheskikh sistem s obryvami i vetvleniyami traektorii”, Diff. uravneniya i protsessy upravleniya, 2012, no. 3, 91–110, (30.09.12) http://www.math.spbu.ru/diffjournal

[11] Sinitsyn I. N., Filtry Kalmana i Pugacheva, Logos, M., 2006

[12] Skorokhod A. V., “Vetvyaschiesya diffuzionnye protsessy”, Teoriya veroyatnostei i ee primeneniya, 9:3 (1964), 492–497 | MR | Zbl

[13] Tikhonov V. I., Kulman N. K., Nelineinaya filtratsiya i kvazikogerentnyi priem signalov, Sovetskoe radio, M., 1975

[14] Artemiev S. S., Averina T. A., Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations, VSP, 1997 | MR | Zbl

[15] Bain A., Crisan D., Fundamentals of Stochastic Filtering, Springer, 2009 | MR | Zbl

[16] Chen Z., Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, Technical Report, Adaptive Syst. Lab McMaster University, Hamilton, ON, Canada, 2003

[17] Dynkin E. B., “Superprocesses and partial differential equations”, Annals of Probability, 21:3 (1993), 1185–1262 | DOI | MR | Zbl

[18] Hazewinkel M., “Lectures on linear and nonlinear filtering”, Analysis and Estimation of Stochastic Mechanical Systems, eds. W. O. Schiehlen, W. Wedig, Springer-Verlag, 1988, 103–136 | MR

[19] Schurz H., “Numerical analysis of stochastic differential equations without tears”, Handbook of Stochastic Analysis and Applications, eds. V. Lakshmikantham, D. Kannan, Marcel Dekker, 2002, 237–359 | MR

[20] Yau S.-T., Yau S. S.-T., “Existence and uniqueness of solutions for Duncan–Mortensen–Zakai equations”, Proc. of the 44th IEEE Conf. on Decision and Control, and the European Control Conference, IEEE, 2005, 536–541