On spline approximation with a~reproducing kernel method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 365-376.

Voir la notice de l'article provenant de la source Math-Net.Ru

Spline approximation with a reproducing kernel of a semi-Hilbert space is studied. Conditions are formulated that uniquely identify the natural Hilbert space by a reproducing kernel, a trend of spline, and the approximation domain. The construction of spline with external drift is proposed. It allows one to approximate functions having areas of big gradients or first-kind breaks. The conditional positive definiteness of some known radial basis functions is proved.
@article{SJVM_2013_16_4_a5,
     author = {A. I. Rozhenko and T. S. Shaidorov},
     title = {On spline approximation with a~reproducing kernel method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {365--376},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/}
}
TY  - JOUR
AU  - A. I. Rozhenko
AU  - T. S. Shaidorov
TI  - On spline approximation with a~reproducing kernel method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 365
EP  - 376
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/
LA  - ru
ID  - SJVM_2013_16_4_a5
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%A T. S. Shaidorov
%T On spline approximation with a~reproducing kernel method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 365-376
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/
%G ru
%F SJVM_2013_16_4_a5
A. I. Rozhenko; T. S. Shaidorov. On spline approximation with a~reproducing kernel method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 365-376. http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/

[1] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:1–3 (1950), 337–404 | DOI | MR | Zbl

[2] Atteia M., “Fonctions “spline” et noyaux reproduissants d'Aronszain–Bergman”, RAIRO, 4:3 (1970), 31–43 | MR | Zbl

[3] Bezhaev A. Yu., “Reproducing mappings and vector spline-functions”, Sov. J. Numer. Anal. Math. Modelling, 5:2 (1990), 91–109 | MR | Zbl

[4] Dubrule O., Geostatistics for Seismic Data Integration in Earth Models Tulsa, Society of Exploration Geophysicists European Association of Geoscientists and Engineers, 2003; O. Dyubrul, Ispolzovanie geostatistiki dlya vklyucheniya v geologicheskuyu model seismicheskikh dannykh, EAGE, 2002

[5] Bozzini M., Rossini M., Schaback R., “Generalized Whittle–Matérn and polyharmonic kernels”, Adv. Comput. Math., 39:1 (2013), 129–141 | DOI | MR | Zbl

[6] Mitáš L., Mitášová H., “General variational approach to the interpolation problem”, Comput. Math. Appl., 16:12 (1988), 983–992 | DOI | MR | Zbl

[7] Rozhenko A. I., Teoriya i algoritmy variatsionnoi splain-approksimatsii, ed. A. M. Matsokin, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005

[8] Micchelli C. A., “Interpolation of scattered data: distance matrices and conditionally positive definite functions”, Constr. Approx., 2 (1986), 11–22 | DOI | MR | Zbl

[9] Madych W. R., Nelson S. A., “Multivariate interpolation and conditionally positive definite functions. II”, Math. Comput., 54 (1990), 211–230 | DOI | MR | Zbl

[10] Volkov Yu. S., Miroshnichenko V. L., “Postroenie matematicheskoi modeli universalnoi kharakteristiki radialno-osevoi gidroturbiny”, Sib. zhurn. industr. matem., 1:1 (1998), 77–88 | Zbl

[11] Bogdanov V. V., Karsten W. V., Miroshnichenko V. L., Volkov Yu. S., “Application of splines for determining the velocity characteristic of a medium from a vertical seismic survey”, Cent. Eur. J. Math., 11:4 (2013), 779–786 | DOI | MR | Zbl

[12] Matheron G., “Splines and kriging; their formal equivalence”, Solutions Looking for Geological Problems, Syracuse Univ. Geology Contribution, 8, eds. D. F. Merriam, Syracuse, NY, 1981, 77–95

[13] A. Yu. Bezhaev, “Approximation of linear functional and multidimensional spline-interpolation”, Soviet Math. Dokl., 40:1 (1990), 221–224 | MR | Zbl

[14] Bezhaev A. Yu., Vasilenko V. A., Variational Theory of Splines, Kluwer Academic/Plenum Publishers, New York, 2001 | MR | Zbl

[15] Duchon J., “Spline minimizing rotation-invariant seminorms in Sobolev spaces”, Lect. Notes Math., 571, 1977, 85–100 | DOI | MR | Zbl

[16] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka. Leningr. otd-nie, L., 1991 | MR | Zbl

[17] Hardy R. L., “Multiquadric equations of topography and other irregular surfaces”, J. Geophys. Res., 76 (1971), 1905–1915 | DOI

[18] Schaback R., Wendland H., “Characterization and construction of radial basis functions”, Multivariate Approximation and Applications, eds. N. Din, D. Leviatan, D. Levin, A. Pinkus, Cambridge University Press, Cambridge, 2001, 1–24 | DOI | MR | Zbl

[19] Wedland H., Scattered Data Approximation, Cambridge Monographs on Appl. and Comput. Math., 17, Cambridge University Press, Cambridge, 2005 | MR

[20] Buhmann M. D., Radial Basis Functions: Theory and Implementation, Cambridge Monographs on Appl. and Comput. Math., 12, Cambridge University Press, Cambridge, 2004 | MR

[21] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972 | MR | MR