On spline approximation with a~reproducing kernel method
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 365-376

Voir la notice de l'article provenant de la source Math-Net.Ru

Spline approximation with a reproducing kernel of a semi-Hilbert space is studied. Conditions are formulated that uniquely identify the natural Hilbert space by a reproducing kernel, a trend of spline, and the approximation domain. The construction of spline with external drift is proposed. It allows one to approximate functions having areas of big gradients or first-kind breaks. The conditional positive definiteness of some known radial basis functions is proved.
@article{SJVM_2013_16_4_a5,
     author = {A. I. Rozhenko and T. S. Shaidorov},
     title = {On spline approximation with a~reproducing kernel method},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {365--376},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/}
}
TY  - JOUR
AU  - A. I. Rozhenko
AU  - T. S. Shaidorov
TI  - On spline approximation with a~reproducing kernel method
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 365
EP  - 376
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/
LA  - ru
ID  - SJVM_2013_16_4_a5
ER  - 
%0 Journal Article
%A A. I. Rozhenko
%A T. S. Shaidorov
%T On spline approximation with a~reproducing kernel method
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 365-376
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/
%G ru
%F SJVM_2013_16_4_a5
A. I. Rozhenko; T. S. Shaidorov. On spline approximation with a~reproducing kernel method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 365-376. http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/