Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2013_16_4_a5, author = {A. I. Rozhenko and T. S. Shaidorov}, title = {On spline approximation with a~reproducing kernel method}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {365--376}, publisher = {mathdoc}, volume = {16}, number = {4}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/} }
TY - JOUR AU - A. I. Rozhenko AU - T. S. Shaidorov TI - On spline approximation with a~reproducing kernel method JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2013 SP - 365 EP - 376 VL - 16 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/ LA - ru ID - SJVM_2013_16_4_a5 ER -
A. I. Rozhenko; T. S. Shaidorov. On spline approximation with a~reproducing kernel method. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 365-376. http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a5/
[1] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:1–3 (1950), 337–404 | DOI | MR | Zbl
[2] Atteia M., “Fonctions “spline” et noyaux reproduissants d'Aronszain–Bergman”, RAIRO, 4:3 (1970), 31–43 | MR | Zbl
[3] Bezhaev A. Yu., “Reproducing mappings and vector spline-functions”, Sov. J. Numer. Anal. Math. Modelling, 5:2 (1990), 91–109 | MR | Zbl
[4] Dubrule O., Geostatistics for Seismic Data Integration in Earth Models Tulsa, Society of Exploration Geophysicists European Association of Geoscientists and Engineers, 2003; O. Dyubrul, Ispolzovanie geostatistiki dlya vklyucheniya v geologicheskuyu model seismicheskikh dannykh, EAGE, 2002
[5] Bozzini M., Rossini M., Schaback R., “Generalized Whittle–Matérn and polyharmonic kernels”, Adv. Comput. Math., 39:1 (2013), 129–141 | DOI | MR | Zbl
[6] Mitáš L., Mitášová H., “General variational approach to the interpolation problem”, Comput. Math. Appl., 16:12 (1988), 983–992 | DOI | MR | Zbl
[7] Rozhenko A. I., Teoriya i algoritmy variatsionnoi splain-approksimatsii, ed. A. M. Matsokin, Izd-vo IVMiMG SO RAN, Novosibirsk, 2005
[8] Micchelli C. A., “Interpolation of scattered data: distance matrices and conditionally positive definite functions”, Constr. Approx., 2 (1986), 11–22 | DOI | MR | Zbl
[9] Madych W. R., Nelson S. A., “Multivariate interpolation and conditionally positive definite functions. II”, Math. Comput., 54 (1990), 211–230 | DOI | MR | Zbl
[10] Volkov Yu. S., Miroshnichenko V. L., “Postroenie matematicheskoi modeli universalnoi kharakteristiki radialno-osevoi gidroturbiny”, Sib. zhurn. industr. matem., 1:1 (1998), 77–88 | Zbl
[11] Bogdanov V. V., Karsten W. V., Miroshnichenko V. L., Volkov Yu. S., “Application of splines for determining the velocity characteristic of a medium from a vertical seismic survey”, Cent. Eur. J. Math., 11:4 (2013), 779–786 | DOI | MR | Zbl
[12] Matheron G., “Splines and kriging; their formal equivalence”, Solutions Looking for Geological Problems, Syracuse Univ. Geology Contribution, 8, eds. D. F. Merriam, Syracuse, NY, 1981, 77–95
[13] A. Yu. Bezhaev, “Approximation of linear functional and multidimensional spline-interpolation”, Soviet Math. Dokl., 40:1 (1990), 221–224 | MR | Zbl
[14] Bezhaev A. Yu., Vasilenko V. A., Variational Theory of Splines, Kluwer Academic/Plenum Publishers, New York, 2001 | MR | Zbl
[15] Duchon J., “Spline minimizing rotation-invariant seminorms in Sobolev spaces”, Lect. Notes Math., 571, 1977, 85–100 | DOI | MR | Zbl
[16] Ignatov M. I., Pevnyi A. B., Naturalnye splainy mnogikh peremennykh, Nauka. Leningr. otd-nie, L., 1991 | MR | Zbl
[17] Hardy R. L., “Multiquadric equations of topography and other irregular surfaces”, J. Geophys. Res., 76 (1971), 1905–1915 | DOI
[18] Schaback R., Wendland H., “Characterization and construction of radial basis functions”, Multivariate Approximation and Applications, eds. N. Din, D. Leviatan, D. Levin, A. Pinkus, Cambridge University Press, Cambridge, 2001, 1–24 | DOI | MR | Zbl
[19] Wedland H., Scattered Data Approximation, Cambridge Monographs on Appl. and Comput. Math., 17, Cambridge University Press, Cambridge, 2005 | MR
[20] Buhmann M. D., Radial Basis Functions: Theory and Implementation, Cambridge Monographs on Appl. and Comput. Math., 12, Cambridge University Press, Cambridge, 2004 | MR
[21] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1972 | MR | MR