A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 347-364.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $A(\alpha)$-stable numerical methods (ANM) for the number of steps $k\le7$ for stiff initial value problems (IVPs) in ordinary differential equations (ODEs) are proposed. The discrete schemes proposed from their equivalent continuous schemes are obtained. The scaled time variable $t$ in a continuous method, which determines the discrete coefficients of the discrete method is chosen in such a way as to ensure that the discrete scheme attains a high order and $A(\alpha)$-stability. We select the value of $\alpha$ for which the schemes proposed are absolutely stable. The new algorithms are found to have a comparable accuracy with that of the backward differentiation formula (BDF) discussed in [12] which implements the Ode15s in the Matlab suite.
@article{SJVM_2013_16_4_a4,
     author = {R. I. Okuonghae},
     title = {A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {347--364},
     publisher = {mathdoc},
     volume = {16},
     number = {4},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a4/}
}
TY  - JOUR
AU  - R. I. Okuonghae
TI  - A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 347
EP  - 364
VL  - 16
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a4/
LA  - ru
ID  - SJVM_2013_16_4_a4
ER  - 
%0 Journal Article
%A R. I. Okuonghae
%T A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 347-364
%V 16
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a4/
%G ru
%F SJVM_2013_16_4_a4
R. I. Okuonghae. A class of $A(\alpha)$-stable numerical methods for stiff problems in ordinary differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 4, pp. 347-364. http://geodesic.mathdoc.fr/item/SJVM_2013_16_4_a4/

[1] Butcher J. C., “A modified multistep method for the numerical integration of ordinary differential equations”, J. ACM, 12:1 (1965), 125–135 | MR

[2] Butcher J. C., The Numerical Analysis of Ordinary Differential Equations: Runge–Kutta and General Linear Methods, Wiley, Chichester, 1987 | MR | Zbl

[3] Butcher J. C., “Some new hybrid methods for IVPs”, Computational ODEs, eds. J. R. Cash, Glad Well, Clarendon Press, Oxford, 1992, 29–46 | MR

[4] Butcher J. C., “High order $A$-stable numerical methods for stiff problems”, J. of Scientific Computing, 25 (2005), 51–66 | MR | Zbl

[5] Butcher J. C., Numerical Methods for Ordinary Differential Equations, Second Edition, Wiley, Chichester, 2008 | MR | Zbl

[6] Dahlquist G., “A special stability problem for linear multistep methods”, BIT, 3 (1963), 27–43 | DOI | MR | Zbl

[7] Enright W. H., “Continuous numerical methods for ODEs with defect control”, J. Comput. Appl. Math., 125 (2000), 159–170 | DOI | MR | Zbl

[8] Enright W. H., “Second derivative multistep methods for stiff ordinary differential equations”, SIAM J. Numer. Anal., 11 (1974), 321–331 | DOI | MR | Zbl

[9] Fatunla S. O., Numerical Methods for Initial Value Problems in ODEs, Academic Press, New York, 1978

[10] Gragg W. B., Stetter H. J., “Generalized multistep predictor-corrector methods”, J. Assoc. Comput. Mach., 11 (1964), 188–209 | DOI | MR | Zbl

[11] Gear C. W., “Hybrid methods for initial value problems in ordinary differential equations”, SIAM J. Numer. Anal., 2 (1965), 69–86 | MR | Zbl

[12] Gear C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Englewood Cliffs, NJ, 1971 | MR | Zbl

[13] Hairer E., Wanner G., Solving Ordinary Differential Equations, v. II, Stiff and Differential-Algebraic Problems, Springer-Verlag, Berlin, 1996 | MR | Zbl

[14] Higham J. D., Higham J. N., Matlab Guide, SIAM, Philadelphia, 2000 | MR

[15] Ikhile M. N. O., Okuonghae R. I., “Stiffly stable continuous extension of second derivative LMM with an off-step point for IVPs in ODEs”, J. Nig. Assoc. Math. Physics, 11 (2007), 175–190

[16] Ikhile M. N. O., Okuonghae R. I., Ogunleye S. O., “Some general linear methods for the numerical solution of non-stiff IVPs in ODEs”, J. of Algorithms and Computational Technology, 7:1 (2013), 41–64 | DOI | MR

[17] Ikhile M. N. O., “Coefficients for studding one-step rational schemes for IVPs in ODEs: III. Extrapolation methods”, Comp. and Maths. with Appli., 47 (2004), 1463–1475 | DOI | MR | Zbl

[18] Lie I., Norsett S. P., “Superconvergence for multistep collocation”, Math. Comp., 52:185 (1989), 65–79 | DOI | MR | Zbl

[19] Lambert J. D., Numerical Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1991 | MR | Zbl

[20] Lambert J. D., Computational Methods for Ordinary Differential Systems. The Initial Value Problems, Wiley, Chichester, 1973 | Zbl

[21] Okuonghae R. I., Stiffly Stable Second Derivative Continuous LMM for IVPs in ODEs, Ph. D. Thesis, Dept. of Math. University of Benin, Nigeria, Benin City, 2008

[22] Okuonghae R. I., “A Class of Continuous Hybrid LMM for Stiff IVPs in ODEs”, Annals of the Alexandru Ioan Cuza University. Mathematics, 58:2 (2012), 239–258 | MR | Zbl

[23] Okuonghae R. I., Ikhile M. N. O., “A continuous formulation of $A(\alpha)$-stable second derivative linear multistep methods for stiff IVPs and ODEs”, J. of Algorithms and Comp. Technology, 6:1 (2012), 80–100 | MR

[24] Okuonghae R. I., Ikhile M. N. O., “$A(\alpha)$-stable linear multistep methods for stiff IVPs and ODEs”, Acta Univ. Palacki. Olomuc. Fac. rer. nat. Mathematica, 50:1 (2011), 75–92 | MR

[25] Okuonghae R. I., Ikhile M. N. O., “On the construction of high order $A(\alpha)$-stable hybrid linear multistep methods for stiff IVPs and ODEs”, J. of Numerical Analysis and Applications, 15:3 (2012), 231–241 | DOI

[26] Okuonghae R. I., Ikhile M. N. O., “The numerical solution of stiff IVPs in ODEs using modified second derivative BDF”, Acta Univ. Palacki. Olomuc. Fac. rer. nat. Mathematica, 51 (2012), 51–77 | MR | Zbl

[27] Okuonghae R. I., Ikhile M. N. O., “A class of hybrid linear multistep methods with $A(\alpha)$-stability properties for stiff IVPs in ODEs”, J. of Numerical Mathematics (to appear)

[28] Kaps P., “Rosenbrock-type methods”, Numerical Methods for Solving Stiff Initial Value Problems, eds. G. Dahlquist, R. Jeltsch, Inst. für Geometrie und praktische Math. (IGPM) der RWTH Aachen, Aachen, Germany, 1981, Bericht No 9

[29] Nordsieck A., “On numerical integration of ordinary differential equations”, Math. Comp., 16 (1962), 22–49 | DOI | MR | Zbl

[30] Selva M., Arevalo C., Fuhrer C., “A collocation formulation of multistep methods for variable step-size extensions”, Appl. Numer. Math., 42 (2002), 5–16 | DOI | MR | Zbl

[31] Sirisena U., Onumanyi P., Chollon J. P., “Continuous hybrid methods through multistep collocation”, ABACUS, 28 (2002), 58–66

[32] Widlund O., “A note on unconditionally stable linear multistep methods”, BIT, 7 (1967), 65–70 | DOI | MR | Zbl