Analytical solution of generalized spectral problem in the method of recalculating boundary conditions for a~biharmonic equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 267-274.

Voir la notice de l'article provenant de la source Math-Net.Ru

An iterative algorithm with an efficient preconditioner for the numerical solution of an elastic problem in approximation of plate theory with mixed boundary conditions is proposed and substantiated. Exact constants of energy equivalence for optimization of iteration method are obtained. Inversion of the preconditioner is equivalent to the double inversion of a discrete analog of the Laplace operator with the Dirichlet boundary conditions.
@article{SJVM_2013_16_3_a6,
     author = {S. B. Sorokin},
     title = {Analytical solution of generalized spectral problem in the method of recalculating boundary conditions for a~biharmonic equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {267--274},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a6/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - Analytical solution of generalized spectral problem in the method of recalculating boundary conditions for a~biharmonic equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 267
EP  - 274
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a6/
LA  - ru
ID  - SJVM_2013_16_3_a6
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T Analytical solution of generalized spectral problem in the method of recalculating boundary conditions for a~biharmonic equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 267-274
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a6/
%G ru
%F SJVM_2013_16_3_a6
S. B. Sorokin. Analytical solution of generalized spectral problem in the method of recalculating boundary conditions for a~biharmonic equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 267-274. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a6/

[1] Paltsev B. V., “O razlozhenii reshenii zadachi Dirikhle i smeshannoi zadachi dlya bigarmonicheskogo uravneniya v ryad po resheniyam raspadayuschikhsya zadach”, Zhurn. vychisl. matem. i mat. fiziki, 6:1 (1966), 43–51 | MR | Zbl

[2] Bugrov A. N., “Metod fiktivnykh oblastei dlya uravnenii s chastnymi proizvodnymi ellipticheskogo tipa”, Chislennye metody resheniya zadach teorii uprugosti i plastichnosti, Chast II. Materialy V Vsesoyuznoi konferentsii, Izd-vo ITPM SO AN SSSR, Novosibirsk, 1978, 24–35

[3] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[4] Vabischevich P. N., “Chislennoe reshenie kraevykh zadach dlya ellipticheskikh uravnenii chetvertogo poryadka”, Zhurn. vychisl. matem. i mat. fiziki, 24:8 (1984), 1196–1206 | MR | Zbl

[5] Sorokin S. B., “Pereobuslovlivanie pri chislennom reshenii zadachi Dirikhle dlya bigarmonicheskogo uravneniya”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 14:2 (2011), 205–213

[6] Konovalov A. N., Chislennoe reshenie zadachi teorii uprugosti, Nauka, Novosibirsk, 1968

[7] Konovalov A. N., “O chislennom reshenii smeshannoi zadachi uprugosti”, Zhurn. vychisl. matem. i mat. fiziki, 9:2 (1969), 469–474 | MR | Zbl

[8] Kuznetsov Yu. A., Iteratsionnye metody v podprostranstvakh, Izd-vo OVM AN SSSR, M., 1984

[9] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1979 | MR

[10] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[11] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR