Variational methods for constructing of monotone approximations for atmospheric chemistry models
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 243-256.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method for constructing efficient monotone numerical schemes for solving direct, adjoint, and inverse atmospheric chemistry problems is presented. It is a systhesis of a variational principles combined with splitting and decomposition methods and a constructive realization of the Eulerian integrating factors (EIM) by means of the local adjoint problem technique. To provide the efficiency of calculations, a method to decompose the multi component substances transformation operators in terms of mechanisms of reactions is also proposed. With the analytical EIMs, the decomposed systems of stiff ODEs are reduced to the equivalent systems of integral equations. To solve them, non-iterative multistage algorithms of given order of accuracy are developed. An original variational method for constructing of mutually consistent algorithms for direct and adjoint problems, and sensitivity studies for complex models with constraints is developed.
@article{SJVM_2013_16_3_a4,
     author = {V. V. Penenko and E. A. Tsvetova},
     title = {Variational methods for constructing of monotone approximations for atmospheric chemistry models},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {243--256},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a4/}
}
TY  - JOUR
AU  - V. V. Penenko
AU  - E. A. Tsvetova
TI  - Variational methods for constructing of monotone approximations for atmospheric chemistry models
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 243
EP  - 256
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a4/
LA  - ru
ID  - SJVM_2013_16_3_a4
ER  - 
%0 Journal Article
%A V. V. Penenko
%A E. A. Tsvetova
%T Variational methods for constructing of monotone approximations for atmospheric chemistry models
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 243-256
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a4/
%G ru
%F SJVM_2013_16_3_a4
V. V. Penenko; E. A. Tsvetova. Variational methods for constructing of monotone approximations for atmospheric chemistry models. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 243-256. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a4/

[1] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Nauka, Novosibirsk, 1967 | Zbl

[2] Marchuk G. I., Matematicheskoe modelirovanie v probleme okruzhayuschei sredy, Nauka, M., 1982 | MR

[3] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR

[4] Marchuk G. I., Sopryazhennye uravneniya i analiz slozhnykh sistem, Nauka, M., 1992 | MR | Zbl

[5] Penenko V. V., Metody chislennogo modelirovaniya atmosfernykh protsessov, Gidrometeoizdat, L., 1981 | MR

[6] Penenko V. V., Aloyan A. E., Modeli i metody dlya zadach okhrany okruzhayuschei sredy, Nauka, Novosibirsk, 1985 | MR

[7] Dekker K., Verver Ya., Ustoichivost metodov Runge-Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[8] Gear C. W., Numerical Initial Value Problems in Ordinary Differential Equations, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1971 | MR | Zbl

[9] Khairer E., Vanner G., Resheniya obyknovennykh differentsialnykh uravnenii. Zhestkie i differentsialno-algebraicheskie zadachi, Mir, M., 1999

[10] Shtetter Kh., Analiz metodov diskretizatsii dlya obyknovennykh differentsialnykh uravnenii, Mir, M., 1978 | MR

[11] Eiring G., Lin S. G., Lin S. M., Osnovy khimicheskoi kinetiki, Mir, M., 1983

[12] Sandu A., Verwer J. G., van Loon M., Carmichael G. R., Potra F. A., Dabdub D., Seinfield G. H., “Benchmarking stiff ODE solvers for atmospheric chemistry problems. I: Implicit versus explicit”, Atmospheric Environment, 31 (1997), 3151–3166 | DOI

[13] Sandu A., Verwer J. G., Blom J. G., Spee E. J., Carmichael G. R., Potra F. A., “Benchmarking stiff ODE solvers for atmospheric chemistry problems. II: Rosenbrock solvers”, Atmospheric Environment, 31 (1997), 3459–3472 | DOI

[14] Penenko V. V., “Variatsionnye metody usvoeniya dannykh i obratnye zadachi dlya izucheniya atmosfery, okeana i okruzhayuschei sredy”, Sib. zhurn. vychislit. matematiki (Novosibirsk), 12:4 (2009), 421–434 | Zbl

[15] Penenko V., Tsvetova E., “Discrete-analytical methods for the implementation of variational principles in environmental applications”, J. of Computational and Applied Mathematics, 226:1 (2009), 319–330 | DOI | MR | Zbl

[16] Penenko V., Baklanov A., Tsvetova E., Mahura A., “Direct and inverse problems in a variational concept of environmental modeling”, Pure and Applied Geophysics, 169:4 (2012), 447–465 | DOI

[17] Samarskii A. A., Vabischevich P. N., Additivnye skhemy dlya zadach matematicheskoi fiziki, Nauka, M., 2001

[18] Penenko V. V., “O kontseptsii prirodookhrannogo prognozirovaniya”, Optika atmosfery i okeana, 23:6 (2010), 432–438

[19] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[20] Kamke E., Differentialgleichungen. Lösungsmethoden und Lösungen, v. 1, Akademische Verlagsgesellschaft Geest Portig, Leipzig, 1959 | MR

[21] Aramanovich I. G., Guter R. S., Lyusternik L. A., Raukhvarger I. L. i dr., Matematicheskii analiz: Differentsirovanie i integrirovanie, Seriya SMB, Fizmatgiz, M., 1961

[22] Smirnov V. I., Kurs vysshei matematiki, v. 4, Nauka, M., 1974 | MR

[23] Matveev N. M., Metody integrirovaniya obyknovennykh differentsialnykh uravnenii, 3-e izd-nie, ispr. i dop., Vysshaya shkola, M., 1967 | Zbl

[24] Kurant P., Kurs differentsialnogo i integralnogo ischisleniya, v. 1, Nauka, M., 1967