Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 205-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

Enumeration problems for $n$-valued serial sequences are considered. Sets of increasing and decreasing sequences whose structure is specified by constraints on lengths of series and on a difference in heights of the neighboring series in the case when this difference lies between $\delta_1$ and $\delta_2$ are examined. Formulas for powers of these sets and algorithms for the direct and reverse numerations (assigning smaller numbers to the lexicographically lower-order sequences or smaller numbers to the lexicographically higher-order sequences) are obtained.
@article{SJVM_2013_16_3_a1,
     author = {V. A. Amelkin},
     title = {Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {205--215},
     publisher = {mathdoc},
     volume = {16},
     number = {3},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a1/}
}
TY  - JOUR
AU  - V. A. Amelkin
TI  - Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 205
EP  - 215
VL  - 16
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a1/
LA  - ru
ID  - SJVM_2013_16_3_a1
ER  - 
%0 Journal Article
%A V. A. Amelkin
%T Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 205-215
%V 16
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a1/
%G ru
%F SJVM_2013_16_3_a1
V. A. Amelkin. Enumeration problems of sets of increasing and decreasing $n$-valued serial sequences with double-ended constraints on series heights. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 3, pp. 205-215. http://geodesic.mathdoc.fr/item/SJVM_2013_16_3_a1/

[1] Amelkin V. A., Perechislitelnye zadachi seriinykh posledovatelnostei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008

[2] Amelkin V. A., “Numeratsiya neubyvayuschikh i nevozrastayuschikh seriinykh posledovatelnostei”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:4 (2009), 389–401

[3] Cover T. M., “Enumerative source encoding”, IEEE Trans. Inform. Theory, 19:1 (1973), 73–77 | DOI | MR | Zbl

[4] Amelkin V. A., Metody numeratsionnogo kodirovaniya, Nauka, Novosibirsk, 1986 | MR