Convergence of splitting method for the nonlinear Boltzmann equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 123-131

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of convergence of the splitting method scheme for the nonlinear Boltzmann equation is considered. On the basis of the splitting method scheme, boundedness of positive solutions in the space of continuous functions is obtained. By means of the solution boundedness and found a priori estimates, convergence of the splitting method scheme and uniqueness of the limiting element are proved. The found limiting element satisfies the equivalent integral Boltzmann equation. Thereby global solvability of the nonlinear Boltzmann equation in time is shown.
@article{SJVM_2013_16_2_a2,
     author = {A. Sh. Akysh},
     title = {Convergence of splitting method for the nonlinear {Boltzmann} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {123--131},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/}
}
TY  - JOUR
AU  - A. Sh. Akysh
TI  - Convergence of splitting method for the nonlinear Boltzmann equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 123
EP  - 131
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/
LA  - ru
ID  - SJVM_2013_16_2_a2
ER  - 
%0 Journal Article
%A A. Sh. Akysh
%T Convergence of splitting method for the nonlinear Boltzmann equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 123-131
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/
%G ru
%F SJVM_2013_16_2_a2
A. Sh. Akysh. Convergence of splitting method for the nonlinear Boltzmann equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 123-131. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/