Convergence of splitting method for the nonlinear Boltzmann equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 123-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of convergence of the splitting method scheme for the nonlinear Boltzmann equation is considered. On the basis of the splitting method scheme, boundedness of positive solutions in the space of continuous functions is obtained. By means of the solution boundedness and found a priori estimates, convergence of the splitting method scheme and uniqueness of the limiting element are proved. The found limiting element satisfies the equivalent integral Boltzmann equation. Thereby global solvability of the nonlinear Boltzmann equation in time is shown.
@article{SJVM_2013_16_2_a2,
     author = {A. Sh. Akysh},
     title = {Convergence of splitting method for the nonlinear {Boltzmann} equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {123--131},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/}
}
TY  - JOUR
AU  - A. Sh. Akysh
TI  - Convergence of splitting method for the nonlinear Boltzmann equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 123
EP  - 131
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/
LA  - ru
ID  - SJVM_2013_16_2_a2
ER  - 
%0 Journal Article
%A A. Sh. Akysh
%T Convergence of splitting method for the nonlinear Boltzmann equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 123-131
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/
%G ru
%F SJVM_2013_16_2_a2
A. Sh. Akysh. Convergence of splitting method for the nonlinear Boltzmann equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 123-131. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a2/

[1] Boltsman L., Lektsii po teorii gazov, Izd-vo tekh.-teor. lit., M., 1956

[2] Karleman T., Matematicheskie zadachi kineticheskoi teorii gazov, IL, M., 1960

[3] Cherchinyani K., Teoriya i prilozheniya uravneniya Boltsmana, Mir, M., 1978 | MR

[4] Zwifel P. F., “The Boltzmann equation and its properties”, Lecture Notes in Mathematics, 1048, 1984, 111–175 | DOI | MR

[5] Dzh. L. Libovits, E. U. Montroll (red.), Neravnovesnye yavleniya: Uravneniya Boltsmana, Per. s angl., Mir, M., 1986 | MR

[6] DiPerna R. J., Lions P. L., “Solutions globales de I'equation de Boltzmann”, Proc. C. R. Acad. Sci. Paris Serie I, 306 (1988), 343–346 | MR

[7] Temam R., “Sur la résolution exacte et approchée d'un probléme hyperbolique non linéaire de T. Carleman”, Archive Rat. Mech. Anal., 35:5 (1969), 351–362 | DOI | MR | Zbl

[8] Sultangazin U. M., Discrete Nonlinear Models of the Boltzmann Equation, Nauka, M., 1987 | MR | Zbl

[9] Platkowski T., Illner R., “Discrete velocity models of the Boltzmann equation: A survey on the mathematical aspects of the theory”, SIAM Rev., 30:2 (1988), 213–255 | DOI | MR | Zbl

[10] Akishev A. Sh., “Globalnaya teorema suschestvovaniya i edinstvennosti dlya trekhmernoi modeli Broduella”, Zhurn. vychisl. matem. i mat. fiziki, 37:3 (1997), 367–377 | MR | Zbl

[11] Akysh (Akishev) A. Sh., “Ob ustoichivosti v $\ell_p$ nekotorykh raznostnykh skhem dlya uravneniya perenosa”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 5:3 (2002), 199–214 | Zbl

[12] Akysh (Akishev) A. Sh., “Ustoichivost v $\ell_p$ nekotorykh raznostnykh skhem dlya uravneniya teploprovodnosti”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 6:1 (2003), 1–16 | Zbl

[13] Akysh A. Sh., “Ustoichivost v $\ell_p$ nekotorykh raznostnykh skhem dlya odnoi sistemy nelineinykh parabolicheskikh uravnenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 8:4 (2005), 273–280 | Zbl

[14] Akishev A. Sh., Sultangazin A. U., “Novye apriornye otsenki resheniya dlya nelineinykh sistem uravneniya Karlemana”, Vestnik AN Kaz. SSR, 1991, no. 11, 40–47 | MR

[15] Akysh A. Sh., “O nelineinom uravnenii Boltsmana”, Matematicheskii zhurnal (Almaty), 2:1 (2002), 10–16 | MR | Zbl

[16] Akysh A. Sh., “O razreshimosti nelineinogo uravneniya Boltsmana”, Neklassicheskie uravneniya matematicheskoi fiziki, Izd-vo Instituta matematiki SO RAN, Novosibirsk, 2007, 15–23

[17] Krasnoselskii M. A., Vainikko G. M. i dr., Priblizhennoe reshenie operatornykh uravnenii, Nauka, M., 1969 | MR

[18] Kogan M. N., Dinamika razrezhennogo gaza, Nauka, M., 1967 | Zbl