Algorithms for solving inverse geophysical problems on parallel computing systems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 107-121.

Voir la notice de l'article provenant de la source Math-Net.Ru

For solving inverse gravimetry problems, efficient stable parallel algorithms based on iterative gradient methods are proposed. For solving systems of linear algebraic equations with block-tridiagonal matrices arising in geoelectrics problems, a parallel matrix sweep algorithm, a square root method, and a conjugate gradient method with preconditioner are proposed. The algorithms are implemented numerically on the MVS-IMM parallel computing system, NVIDIA graphics processors, and the Intel multi-core CPU with the use of new computing technologies. The parallel algorithms are incorporated into a developed system of remote computations “Specialized Web-Portal for Solving Geophysical Problems on Multiprocessor Computers”. Problems with “quasi-model” and real data are solved.
@article{SJVM_2013_16_2_a1,
     author = {E. N. Akimova and D. V. Belousov and V. E. Misilov},
     title = {Algorithms for solving inverse geophysical problems on parallel computing systems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {107--121},
     publisher = {mathdoc},
     volume = {16},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a1/}
}
TY  - JOUR
AU  - E. N. Akimova
AU  - D. V. Belousov
AU  - V. E. Misilov
TI  - Algorithms for solving inverse geophysical problems on parallel computing systems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 107
EP  - 121
VL  - 16
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a1/
LA  - ru
ID  - SJVM_2013_16_2_a1
ER  - 
%0 Journal Article
%A E. N. Akimova
%A D. V. Belousov
%A V. E. Misilov
%T Algorithms for solving inverse geophysical problems on parallel computing systems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 107-121
%V 16
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a1/
%G ru
%F SJVM_2013_16_2_a1
E. N. Akimova; D. V. Belousov; V. E. Misilov. Algorithms for solving inverse geophysical problems on parallel computing systems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 2, pp. 107-121. http://geodesic.mathdoc.fr/item/SJVM_2013_16_2_a1/

[1] Martyshko P. S., Koksharov D. E., “Ob opredelenii plotnosti v sloistoi srede po gravitatsionnym dannym”, Geofizicheskii zhurnal, 27:4 (2005), 678–684

[2] Numerov B. V., “Interpretatsiya gravitatsionnyx nablyudenii v sluchae odnoi kontaktnoi poverkhnosti”, DAN SSSR, 21 (1930), 569–574

[3] Vasin V. V., Eremin I. I., Operatory i iteratsionnye protsessy feierovskogo tipa. Teoriya i prilozheniya, Izd-vo UrO RAN, Ekaterinburg, 2005 | MR

[4] Dashevskii Yu. A., Surodina I. V., Epov M. I., “Kvazitrekhmernoe matematicheskoe modelirovanie diagramm neosesimmetrichnykh zondov postoyannogo toka v anizotropnykh razrezakh”, Sib. zhurn. industrialnoi matematiki, 5:3(11) (2002), 76–91 | MR | Zbl

[5] Martyshko P. S., Prutkin I. L., “Tekhnologiya razdeleniya istochnikov gravitatsionnogo polya po glubine”, Geofizicheskii zhurnal, 25:3 (2003), 159–168

[6] Voevodin Vl. V., Tekhnologii parallelnogo programmirovaniya, URL: , (data obrascheniya: 06.02.2012) http://parallel.ru/

[7] Berillo A., NVIDIA CUDA – negraficheskie vychisleniya na graficheskikh protsessorakh, URL: , (data obrascheniya: 06.02.2012) http://www.ixbt.com/video3/cuda-1.shtml

[8] Akimova E. N., Belousov D. V., “Rasparallelivanie algoritmov resheniya lineinoi obratnoi zadachi gravimetrii na MVS-1000 i graficheskikh protsessorakh”, Vestnik NNGU, 2010, no. 5, Ch. 1, 193–200

[9] Bakushinsky A., Goncharsky A., Ill-Posed Problems: Theory and Applications, Kluwer Akad. Publ., London, 1994 | MR

[10] Faddeev V. K., Faddeeva V. N., Vychislitelnye metody lineinoi algebry, Gos. izd-vo fiz.-mat. literatury, M., 1963 | MR

[11] Akimova E. N., “Rasparallelivanie algoritma matrichnoi progonki”, Matematicheskoe modelirovanie, 6:9 (1994), 61–67 | MR | Zbl

[12] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[13] Akimova E. N., Gemaidinov D. V., “Parallelnye algoritmy resheniya obratnoi zadachi gravimetrii i organizatsiya udalennogo vzaimodeistviya mezhdu MVS-1000 i polzovatelem”, Vychislitelnye metody i programmirovanie, 9:1 (2008), 133–144

[14] Martyshko P. S., Vasin V. V., Akimova E. N., Pyankov V. A., “O kompleksnoi interpretatsii gravitatsionnykh i magnitovariatsionnykh dannykh (na primere Bashkirskogo Preduralya)”, Geofizika, 2011, no. 4, 30–36

[15] Metodika razrabotki mnogopotochnykh prilozhenii: printsipy i prakticheskaya realizatsiya, URL: , (data obrascheniya: 06.02.2012) http://www.rsdn.ru/article/baseserv/RUThreadingMethodology.xml