On constructing the generally periodical solutions of a~complicated structure of a~non-autonomous system of differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 63-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a numerical scheme of constructing approximate generally periodical solutions of a complicatedtructure of a non-autonomous system of ordinary differential equations with the periodical right-hand sides on the surface of a torus is considered. The existence of such solutions as well as convergence of the method of successive approximations are shown. There are given results of the computational experiment.
@article{SJVM_2013_16_1_a6,
     author = {A. N. Pchelintsev},
     title = {On constructing the generally periodical solutions of a~complicated structure of a~non-autonomous system of differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {63--70},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a6/}
}
TY  - JOUR
AU  - A. N. Pchelintsev
TI  - On constructing the generally periodical solutions of a~complicated structure of a~non-autonomous system of differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 63
EP  - 70
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a6/
LA  - ru
ID  - SJVM_2013_16_1_a6
ER  - 
%0 Journal Article
%A A. N. Pchelintsev
%T On constructing the generally periodical solutions of a~complicated structure of a~non-autonomous system of differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 63-70
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a6/
%G ru
%F SJVM_2013_16_1_a6
A. N. Pchelintsev. On constructing the generally periodical solutions of a~complicated structure of a~non-autonomous system of differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 63-70. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a6/

[1] Afanasev A. P., Dzyuba S. M., Ustoichivost po Puassonu v dinamicheskikh i nepreryvnykh periodicheskikh sistemakh, LKI, M., 2007

[2] Pchelintsev A. N., Chislennye metody i obobschenno-periodicheskie resheniya dinamicheskikh sistem, Lambert Academic Publishing, Saarbrücken, 2010

[3] Kozlov V. V., “K teorii integrirovaniya uravnenii negolonomnoi mekhaniki”, Negolonomnye dinamicheskie sistemy. Integriruemost, khaos, strannye attraktory, eds. Borisov A. V., Mamaev I. S., Izd-vo Instituta kompyuternykh issledovanii, Moskva–Izhevsk, 2002, 149–173 | MR

[4] Kozlov V. V., Metody kachestvennogo analiza v dinamike tverdogo tela, Regulyarnaya i khaoticheskaya dinamika, Izhevsk, 2000 | MR

[5] Titchmarsh E., Teoriya funktsii, Nauka, M., 1980 | MR | Zbl

[6] Bari N. K., Trigonometricheskie ryady, Fizmatlit, M., 1961 | MR

[7] Nemytskii V. V., Stepanov V. V., Kachestvennaya teoriya differentsialnykh uravnenii, Editorial URSS, M., 2004

[8] Kalitkin N. N., Chislennye metody, Nauka, M., 1978 | MR

[9] Bor G., Pochti periodicheskie funktsii, Editorial URSS, M., 2005

[10] Demidovich B. P., Maron I. A., Osnovy vychislitelnoi matematiki, Lan, SPb., 2006