Finite difference simulation of elastic waves propagation through 3D heterogeneous multiscale media based on locally refined grids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 45-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

In order to simulate the interaction of seismic waves with microheterogeneities (like cavernous/fractured reservoirs), a finite difference technique based on locally refined in time and in space grids is used. The need to use these grids is due to essentially different scales of heterogeneities in the reference medium and in the reservoir. Parallel computations are based on Domain Decomposition of the target area into elementary subdomains in both the reference medium (a coarse grid) and the reservoir (a fine grid). Each subdomain is assigned to its specific Processor Unit which forms two groups: for the reference medium and for the reservoir. The data exchange between PU within the group is performed by non-blocking iSend/iReceive MPI commands. The data exchange between the two groups is done simultaneously with coupling a coarse and a fine grids and is controlled by a specially designated PU. The results of numerical simulation for a realistic model of fracture corridors are presented and discussed.
@article{SJVM_2013_16_1_a4,
     author = {V. I. Kostin and V. V. Lisitsa and G. V. Reshetova and V. A. Tcheverda},
     title = {Finite difference simulation of elastic waves propagation through {3D} heterogeneous multiscale media based on locally refined grids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {45--55},
     publisher = {mathdoc},
     volume = {16},
     number = {1},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a4/}
}
TY  - JOUR
AU  - V. I. Kostin
AU  - V. V. Lisitsa
AU  - G. V. Reshetova
AU  - V. A. Tcheverda
TI  - Finite difference simulation of elastic waves propagation through 3D heterogeneous multiscale media based on locally refined grids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2013
SP  - 45
EP  - 55
VL  - 16
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a4/
LA  - ru
ID  - SJVM_2013_16_1_a4
ER  - 
%0 Journal Article
%A V. I. Kostin
%A V. V. Lisitsa
%A G. V. Reshetova
%A V. A. Tcheverda
%T Finite difference simulation of elastic waves propagation through 3D heterogeneous multiscale media based on locally refined grids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2013
%P 45-55
%V 16
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a4/
%G ru
%F SJVM_2013_16_1_a4
V. I. Kostin; V. V. Lisitsa; G. V. Reshetova; V. A. Tcheverda. Finite difference simulation of elastic waves propagation through 3D heterogeneous multiscale media based on locally refined grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 16 (2013) no. 1, pp. 45-55. http://geodesic.mathdoc.fr/item/SJVM_2013_16_1_a4/

[1] Rytov S. M., Kravtsov Yu. A., Tatarskii V. I., Vvedenie v statisticheskuyu radiofiziku, Chast II (stokhasticheskie polya), Nauka, M., 1978

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977 | MR

[3] Castro C. E., Kaser M., Toro E. F., “Space-time numerical methods for geophysical applications”, Philosophical Transactions of the Royal Society: series A, 367 (2009), 4613–4631 | DOI | MR | Zbl

[4] Collino F., Fouquet T., Joly P., “A conservative space-time mesh refinement method for 1-D wave equation. Part I: Construction”, Numerische Mathematik, 95:2 (2003), 197–221 | DOI | MR | Zbl

[5] Collino F., Fouquet T., Joly P., “A conservative space-time mesh refinement method for 1-D wave equation. Part II: Analysis”, Numerische Mathematik, 95:2 (2003), 223–251 | DOI | MR | Zbl

[6] Diaz J., Grote M. J., “Energy conserving explicit local time stepping for second-order wave equations”, SIAM J. Scientific Comput., 31:3 (2009), 1985–2014 | DOI | MR | Zbl

[7] Grechka V., “Multiple cracks in VTI rocks: Effective properties and fracture characterization”, Geophysics, 72:5 (2007), D81–D91 | DOI

[8] Lisitsa V., Reshetova G., Tcheverda V., “Finite-difference algorithm with local time-space grid refinement for simulation of waves”, Computational geosciences, 16:1 (2012), 39–54 | Zbl

[9] Reshef M., Landa E., “Post-stack velocity analysis in the dip-angle domain using diffractions”, Geophysical Prospecting, 57:5 (2009), 811–821 | DOI

[10] Reshetova G., Lisitsa V., Tcheverda V., Thore P., “Simulation of seismic waves propagation in Multiscale media on the base of locally refined grids”, 71st EAGE Conference and Exhibition (8–11 June 2009, Amsterdam, The Netherlands), 312

[11] Reshetova G. V., Lisitsa V. V., Tcheverda V. A., Pozdnyakov V. A., “Impact of cavernous/fractured reservoirs to scattered seismic waves in 3D heterogeneous media: Accurate numerical simulation and field study”, SEG Expanded Abstracts, Annual Meeting, 30, SEG, San Antonio, 2011, 2875–2878 | DOI

[12] Saenger E. H., Kruger O. K., Shapiro S. A., “Effective elastic properties of randomly fractured soils: 3D numerical experiments”, Geophysical prospecting, 52:3 (2004), 183–195 | DOI

[13] Sneider Roel, “The theory of coda wave interferometry”, Pure and Applied Geophysics, 163 (2006), 455–473 | DOI

[14] Tsingas C., El Marhfoul B., Dajani A., “Fracture detection by diffraction imaging”, 72nd EAGE Conference and Exhibition incorporating SPE EUROPEC (14–17 June, 2010, Barcelona, Spain), 2010, G044

[15] Virieux J., “P-SV wave propagation in heterogeneous media: Velocity-stress finite difference method”, Geophysics, 51:4 (1986), 889–901 | DOI

[16] Willis M., Burns D., Rao R., Minsley B., Toksoz N., Vetri L., “Spatial orientation and distribution of reservoir fractures from scattered seismic energy”, Geophysics, 71:5 (2006), O43–O51 | DOI