@article{SJVM_2012_15_4_a4,
author = {A. V. Penenko},
title = {Discrete-analytic schemes for solving an inverse coefficient heatconduction problem in a~layered medium with gradient methods},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {393--408},
year = {2012},
volume = {15},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a4/}
}
TY - JOUR AU - A. V. Penenko TI - Discrete-analytic schemes for solving an inverse coefficient heatconduction problem in a layered medium with gradient methods JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 393 EP - 408 VL - 15 IS - 4 UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a4/ LA - ru ID - SJVM_2012_15_4_a4 ER -
%0 Journal Article %A A. V. Penenko %T Discrete-analytic schemes for solving an inverse coefficient heatconduction problem in a layered medium with gradient methods %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 393-408 %V 15 %N 4 %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a4/ %G ru %F SJVM_2012_15_4_a4
A. V. Penenko. Discrete-analytic schemes for solving an inverse coefficient heatconduction problem in a layered medium with gradient methods. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 4, pp. 393-408. http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a4/
[1] Penenko V. V., Metody chislennogo modelirovaniya atmosfernykh protsessov, Gidrometizdat, Leningrad, 1981 | MR
[2] Karchevskii A .L., “Korrektnaya skhema deistvii pri chislennom reshenii obratnoi zadachi optimizatsionnym metodom”, Sib. zhurn. vychisl. matematiki (RAN. Sib. otd-nie, Novosibirsk), 11:2 (2008), 139–149
[3] Samarskii A. A., Vabischevich P. N., Vychislitelnaya teploperedacha, LKI, M., 2007
[4] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy: vvedenie v teoriyu, Nauka, M., 1977 | MR
[5] Marchuk G. I., Metody vychislitelnoi matematiki, Lan, M., 2009
[6] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl
[7] Streng G., Fiks D., Teoriya metoda konechnykh elementov, Mir, M., 1984
[8] Infield L., Hull T., “The factorization method”, Reviews of Modern Physics, 23:1 (1951), 21–68 | DOI | MR
[9] El-Mistikawy T. M., Werle M. J., “Numerical method for boundary layers with blowing. The exponential box scheme”, AIAA J., 16 (1978), 749–751 | DOI | Zbl
[10] Berger A. E., Solomon J. M., Ciment M., “An analysis of a uniformly accurate difference method for a singular perturbation problem”, Mathematics of computation, 37:155 (1981), 79–94 | DOI | MR | Zbl
[11] Korneev V. G., “O tochnykh setochnykh skhemakh”, Zhurn. vychisl. matematiki i mat. fiziki, 22:3 (1982), 646–654 | MR | Zbl
[12] Zverev V. G., Goldin V. D., “Raznostnaya skhema dlya resheniya kovektivno-diffuzionnykh zadach teplomassoperenosa”, Vychislitelnye tekhnologii, 7:6 (2002), 24–37 | MR | Zbl
[13] Voevodin A. F., “Metod faktorizatsii dlya lineinykh i kvazilineinykh singulyarno vozmuschennykh kraevykh zadach dlya obyknovennykh differentsialnykh uravnenii”, Sib. zhurn. vychisl. matematiki (RAN. Sib. otd-nie, Novosibirsk), 12:1 (2009), 1–15 | Zbl
[14] Penenko V. V., Tsvetova E. A., “Discrete-analytical methods for the implementation of variational principles in environmental applications”, J. of Computational and Applied Mathematics, 226 (2009), 319–330 | DOI | MR | Zbl
[15] Hasanov A., DuChateau P., Pektas B., “An adjoint problem approach and coarse-fine mesh method for identification of the diffusion coefficient in a linear parabolic equation”, J. of Inverse and Ill-Posed Problems, 14:4 (2006), 1–29 | MR
[16] Penenko V. V., Nekotorye problemy vychislitelnoi i prikladnoi matematiki, ed. M. M. Lavrentev, Nauka, Novosibirsk, 1975, 61–77 | MR
[17] Polak E., Chislennye metody optimizatsii, Mir, M., 1974 | MR | Zbl