Localization method for lines of discontinuity of approximately defined function of two variables
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 4, pp. 345-357.

Voir la notice de l'article provenant de la source Math-Net.Ru

A function of two variables with the lines of discontinuity of the first kind is considered. It is assumed that outside discontinuity lines the function to be measured is smooth and has a limited partial derivative. Instead of the accurate function its approximation in $L_2$ and perturbation level are known. The problem in question belongs to the class of nonlinear ill-posed problems, for whose solution it is required to construct regularizing algorithms. We propose a reduced theoretical approach to solving the problem of localizing the discontinuity lines of the function that is noisy in the space $L_2$. This is done in the case when conditions of an exact function are imposed “in the small”. Methods of averaging have been constructed, the estimations of localizing the line (in the small) have been obtained.
@article{SJVM_2012_15_4_a0,
     author = {T. V. Antonova},
     title = {Localization method for lines of discontinuity of approximately defined function of two variables},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {345--357},
     publisher = {mathdoc},
     volume = {15},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a0/}
}
TY  - JOUR
AU  - T. V. Antonova
TI  - Localization method for lines of discontinuity of approximately defined function of two variables
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 345
EP  - 357
VL  - 15
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a0/
LA  - ru
ID  - SJVM_2012_15_4_a0
ER  - 
%0 Journal Article
%A T. V. Antonova
%T Localization method for lines of discontinuity of approximately defined function of two variables
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 345-357
%V 15
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a0/
%G ru
%F SJVM_2012_15_4_a0
T. V. Antonova. Localization method for lines of discontinuity of approximately defined function of two variables. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 4, pp. 345-357. http://geodesic.mathdoc.fr/item/SJVM_2012_15_4_a0/

[1] Malla S., Veivlety v obrabotke signalov, Mir, M., 2005

[2] Furman Ya. A., Krevetskii A. V., Peredreev A. K. i dr., Vvedenie v konturnyi analiz i ego prilozheniya k obrabotke izobrazhenii i signalov, Fizmatlit, M., 2002

[3] Derevtsov E. Yu., Pikalov V. V., “Vosstanovlenie vektornogo polya i ego singulyarnostei po luchevym preobrazovaniyam”, Sib. zhurn. vychisl. matematiki (RAN. Sib. otd-nie, Novosibirsk), 14:1 (2011), 29–46

[4] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[5] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[6] Vasin V. V., Ageev A. L., Ill-Posed Problems with A Priori Information, VSP, Utrecht, the Netherlands, 1995 | MR | Zbl

[7] Ageev A. L., Antonova T. V., “O zadache razdeleniya osobennostei”, Izv. vuzov. Matematika, 2007, no. 11, 3–9 | MR

[8] Antonova T. V., “Vosstanovlenie funktsii s konechnym chislom razryvov 1 roda po zashumlennym dannym”, Izv. vuzov. Matematika, 2001, no. 7, 65–68 | MR | Zbl

[9] Antonova T. V., “Approximation of function with finite number of discontinuities by noised data”, J. Inverse and Ill-Posed Problems, 10:2 (2002), 113–123 | MR | Zbl

[10] Antonova T. V., “Novye metody lokalizatsii razryvov zashumlennoi funktsii”, Sib. zhurn. vychisl. matematiki (RAN. Sib. otd-nie, Novosibirsk), 13:4 (2010), 375–386

[11] Ageev A. L., Antonova T. V., “Regulyariziruyuschie algoritmy vydeleniya razryvov v nekorrektnykh zadachakh”, Zhurn. vychisl. matem. i mat. fiziki, 48:8 (2008), 1362–1370 | MR | Zbl

[12] Ageev A. L., Antonova T. V., “O novom klasse nekorrektno postavlennykh zadach”, Izv. Uralskogo gosuniversiteta. Matematika. Mekhanika. Informatika, 11:58 (2008), 27–45

[13] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR