Reconstruction of solenoidal part of a~three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 329-344.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical solution of a vector field reconstruction problem is offered. It is assumed that a field is given in a unit ball. The approximation of the solenoidal part of the vector field is constructed from ray transforms known over all the straight lines parallel to one of the coordinate planes. Good results of reconstruction of solenoidal vector fields by the numerical simulations are proposed.
@article{SJVM_2012_15_3_a8,
     author = {I. E. Svetov},
     title = {Reconstruction of solenoidal part of a~three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {329--344},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a8/}
}
TY  - JOUR
AU  - I. E. Svetov
TI  - Reconstruction of solenoidal part of a~three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 329
EP  - 344
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a8/
LA  - ru
ID  - SJVM_2012_15_3_a8
ER  - 
%0 Journal Article
%A I. E. Svetov
%T Reconstruction of solenoidal part of a~three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 329-344
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a8/
%G ru
%F SJVM_2012_15_3_a8
I. E. Svetov. Reconstruction of solenoidal part of a~three-dimensional vector field by its ray transforms along straight lines, parallel to the coordinate planes. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 329-344. http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a8/

[1] Smith K. T., Solmon D. C., Wagner S. L., “Practical and mathematical aspects of reconstructing objects from radiographs”, Bull. Amer. Soc., 83:1 (1977), 1227–1270 | DOI | MR | Zbl

[2] Louis A. K., “Nonuniqueness in inverse Radon problems: the frequency distribution of the ghost”, Math. Z., 185 (1984), 429–440 | DOI | MR | Zbl

[3] Derevtsov E. Yu., “Ghost distributions in the cone-beam tomography”, J. of Inverse and Ill-posed Problems, 5:5 (1997), 411–426 | DOI | MR | Zbl

[4] Davison M. E., “The ill-conditioned nature of the limited angle tomography problem”, SIAM J. on Applied Mathematics, 43 (1983), 428–448 | DOI | MR | Zbl

[5] Quinto E. T., “Singular value decompositions and inversion methods for the exterior Radon transform and a spherical transform”, SIAM J. Math. Anal. Appl., 95 (1985), 437–448 | MR

[6] Firbas P., “Tomography from seismic profiles”, Seismic Tomography, ed. G. D. Nolet, Reidel, Dordrecht, 1987, 189–202 | DOI

[7] Alekseev A. S., Lavrent'ev M. M., Romanov M. E., Romanov V. G., “Theoretical and computational aspects of seismic tomography”, Surveys in Geophysics, 11 (1990), 395–409 | DOI

[8] Palamodov V. P., “Reconstruction from limited data of arc means”, J. Fourier Anal. Appl., 6:1 (2000), 25–42 | DOI | MR | Zbl

[9] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Sib. otd-nie, Novosibirsk, 1993 | MR | Zbl

[10] Schuster T., “The 3D Doppler transform: elementary properties and computation of reconstruction kernels”, Inverse Problems, 16 (2000), 701–722 | DOI | MR | Zbl

[11] Vertgeim L., “Integral geometry problems for symmetric tensor fields with incomplete data”, J. Inverse Ill-posed Problems, 8 (2000), 353–362 | MR

[12] Denisjuk A., “Inversion of the X-ray transform for 3D symmetric tensor fields with sources on a curve”, Inverse Problems, 22 (2000), 399–411 | MR

[13] Sharafutdinov V., “Slice-by-slice reconstruction algorithm for vector tomography with incomplete data”, Inverse Problems, 23 (2007), 2603–2627 | DOI | MR | Zbl

[14] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya, Nauka, M., 1965