Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2012_15_3_a5, author = {V. V. Ostapenko}, title = {On compact approximations of divergent differential equations}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {293--306}, publisher = {mathdoc}, volume = {15}, number = {3}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a5/} }
V. V. Ostapenko. On compact approximations of divergent differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 293-306. http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a5/
[1] Valiullin A. N., Skhemy povyshennoi tochnosti dlya zadach matematicheskoi fiziki, Izd-vo Novosibirskogo gosudarstvennogo universiteta, Novosibirsk, 1973
[2] Hirsh R., “Higher-order accurate difference solutions of a fluid mechanics problems by a compact differencing technique”, J. Comp. Phys., 12:1 (1975), 90–109 | DOI | MR
[3] Paasonen V. I., “Obobschenie metodov povyshennoi tochnosti dlya uravnenii 2-go poryadka v ortogonalnykh sistemakh koordinat”, Chislen. metody mekhaniki sploshnoi sredy, 8:2 (1977), 94–99
[4] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR | Zbl
[5] Tang M. L., Fornberg B. A., “A compact forth order finite difference scheme for the steady incompressible Navier–Stokes equations”, Int. J. Numer. Methods Fluides, 20 (1995), 1137–1151 | DOI | MR | Zbl
[6] Meitz H. L., Fasel H. F., “A compact difference scheme for the Navier–Stokes equations in vorticity-velocity formulation”, J. Comp. Phys., 157:1 (2000), 371–403 | DOI | MR | Zbl
[7] Wang X., Yang Z. F., Huang G. H., “High order compact difference scheme for convective-diffusion problems on nonuniform grids”, J. Engin. Mech., 131:12 (2005), 1221–1228 | DOI
[8] Ostapenko V. V., “O postroenii raznostnykh skhem povyshennoi tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zhurn. vychisl. matem. i mat. fiziki, 40:12 (2000), 1857–1874 | MR | Zbl
[9] Ostapenko V. V., “Ob approksimatsii zakonov sokhraneniya raznostnymi skhemami skvoznogo scheta”, Zhurn. vychisl. matem. i mat. fiziki, 30:9 (1990), 1405–1417 | MR | Zbl
[10] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1978
[11] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl
[12] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR
[13] Ostapenko V. V., “O konechno-raznostnoi approksimatsii uslovii Gyugonio na fronte udarnoi volny, rasprostranyayuscheisya s peremennoi skorostyu”, Zhurn. vychisl. matem. i mat. fiziki, 38:8 (1998), 1355–1367 | MR | Zbl
[14] Ostapenko V. V., “O povyshenii poryadka slaboi approksimatsii na razryvnykh resheniyakh”, Zhurn. vychisl. matem. i mat. fiziki, 36:10 (1996), 146–157 | MR | Zbl
[15] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zhurn. vychisl. matem. i mat. fiziki, 42:7 (2002), 1019–1037 | MR | Zbl