On compact approximations of divergent differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 293-306.

Voir la notice de l'article provenant de la source Math-Net.Ru

The method for construction of compact difference schemes approximating the divergent differential equations is proposed. The schemes have an arbitrary order of approximation on a stencil of a common type. It is shown that construction of such schemes for partial differential equations is based on spatial compact schemes approximating ordinary differential equations depending on several independent functions. Necessary and sufficient conditions on factors of these schemes, at which they have a high order of approximation, are obtained. Examples of restoration with these schemes of compact difference schemes for partial differential equations are given. It is shown that such compact difference schemes have the same order as classical approximation on smooth solutions and weak approximations on discontinuous solutions.
@article{SJVM_2012_15_3_a5,
     author = {V. V. Ostapenko},
     title = {On compact approximations of divergent differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {293--306},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a5/}
}
TY  - JOUR
AU  - V. V. Ostapenko
TI  - On compact approximations of divergent differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 293
EP  - 306
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a5/
LA  - ru
ID  - SJVM_2012_15_3_a5
ER  - 
%0 Journal Article
%A V. V. Ostapenko
%T On compact approximations of divergent differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 293-306
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a5/
%G ru
%F SJVM_2012_15_3_a5
V. V. Ostapenko. On compact approximations of divergent differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 293-306. http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a5/

[1] Valiullin A. N., Skhemy povyshennoi tochnosti dlya zadach matematicheskoi fiziki, Izd-vo Novosibirskogo gosudarstvennogo universiteta, Novosibirsk, 1973

[2] Hirsh R., “Higher-order accurate difference solutions of a fluid mechanics problems by a compact differencing technique”, J. Comp. Phys., 12:1 (1975), 90–109 | DOI | MR

[3] Paasonen V. I., “Obobschenie metodov povyshennoi tochnosti dlya uravnenii 2-go poryadka v ortogonalnykh sistemakh koordinat”, Chislen. metody mekhaniki sploshnoi sredy, 8:2 (1977), 94–99

[4] Tolstykh A. I., Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990 | MR | Zbl

[5] Tang M. L., Fornberg B. A., “A compact forth order finite difference scheme for the steady incompressible Navier–Stokes equations”, Int. J. Numer. Methods Fluides, 20 (1995), 1137–1151 | DOI | MR | Zbl

[6] Meitz H. L., Fasel H. F., “A compact difference scheme for the Navier–Stokes equations in vorticity-velocity formulation”, J. Comp. Phys., 157:1 (2000), 371–403 | DOI | MR | Zbl

[7] Wang X., Yang Z. F., Huang G. H., “High order compact difference scheme for convective-diffusion problems on nonuniform grids”, J. Engin. Mech., 131:12 (2005), 1221–1228 | DOI

[8] Ostapenko V. V., “O postroenii raznostnykh skhem povyshennoi tochnosti dlya skvoznogo rascheta nestatsionarnykh udarnykh voln”, Zhurn. vychisl. matem. i mat. fiziki, 40:12 (2000), 1857–1874 | MR | Zbl

[9] Ostapenko V. V., “Ob approksimatsii zakonov sokhraneniya raznostnymi skhemami skvoznogo scheta”, Zhurn. vychisl. matem. i mat. fiziki, 30:9 (1990), 1405–1417 | MR | Zbl

[10] Godunov S. K., Ryabenkii V. S., Raznostnye skhemy, Nauka, M., 1978

[11] Lax P. D., Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Soc. Industr. and Appl. Math., Philadelphia, 1972 | MR | Zbl

[12] Rozhdestvenskii B. L., Yanenko N. N., Sistemy kvazilineinykh uravnenii, Nauka, M., 1978 | MR

[13] Ostapenko V. V., “O konechno-raznostnoi approksimatsii uslovii Gyugonio na fronte udarnoi volny, rasprostranyayuscheisya s peremennoi skorostyu”, Zhurn. vychisl. matem. i mat. fiziki, 38:8 (1998), 1355–1367 | MR | Zbl

[14] Ostapenko V. V., “O povyshenii poryadka slaboi approksimatsii na razryvnykh resheniyakh”, Zhurn. vychisl. matem. i mat. fiziki, 36:10 (1996), 146–157 | MR | Zbl

[15] Ostapenko V. V., “Simmetrichnye kompaktnye skhemy s iskusstvennymi vyazkostyami povyshennogo poryadka divergentnosti”, Zhurn. vychisl. matem. i mat. fiziki, 42:7 (2002), 1019–1037 | MR | Zbl