The method of conjugate operators for solving boundary value problems for ordinary second order differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 251-260.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, for a linear boundary value problem, we propose a method that reduces a solution to a differential problem to a discrete (difference) problem. Difference equations, which are an exact analog of differential equation, are constructed by the conjugate operator method. Conjugate equations are solved by the factorization method.
@article{SJVM_2012_15_3_a1,
     author = {A. F. Voevodin},
     title = {The method of conjugate operators for solving boundary value problems for ordinary second order differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {251--260},
     publisher = {mathdoc},
     volume = {15},
     number = {3},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a1/}
}
TY  - JOUR
AU  - A. F. Voevodin
TI  - The method of conjugate operators for solving boundary value problems for ordinary second order differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 251
EP  - 260
VL  - 15
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a1/
LA  - ru
ID  - SJVM_2012_15_3_a1
ER  - 
%0 Journal Article
%A A. F. Voevodin
%T The method of conjugate operators for solving boundary value problems for ordinary second order differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 251-260
%V 15
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a1/
%G ru
%F SJVM_2012_15_3_a1
A. F. Voevodin. The method of conjugate operators for solving boundary value problems for ordinary second order differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 3, pp. 251-260. http://geodesic.mathdoc.fr/item/SJVM_2012_15_3_a1/

[1] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982 | MR

[2] Samarskii A. A., Vvedenie v teoriyu raznostnykh skhem, Nauka, M., 1971 | MR | Zbl

[3] Kollatts L., Funktsionalnyi analiz i vychislitelnaya matematika, Mir, M., 1969

[4] Krasnoselskii M. A., Burd V. Sh., Kolesov Yu. S., Nelineinye pochti periodicheskie kolebaniya, Nauka, M., 1970 | MR

[5] Voevodin A. F., Shugrin S. M., Metody resheniya odnomernykh evolyutsionnykh sistem, Nauka, Novosibirsk, 1993 | MR

[6] Voevodin V. V., Kuznetsov Yu. A., Matritsy i vychisleniya, Nauka, M., 1984 | MR | Zbl

[7] Bakhvalov N. S., Chislennye metody, v. I, Nauka, M., 1973 | MR | Zbl

[8] Pearson C. E., “On a differential equation of boundary layer type”, J. Math. Phys., 47 (1968), 134–154 | MR | Zbl

[9] Bagaev B. M., Karepova E. D,, Shaidurov V. V., Setochnye metody resheniya zadach s pogranichnym sloem, Nauka, Novosibirsk, 2001 | MR | Zbl

[10] Voevodin A. F., “Metod faktorizatsii dlya lineinykh i kvazilineinykh singulyarno vozmuschennykh kraevykh zadach dlya obyknovennykh differentsialnykh uravnenii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:1 (2009), 1–15 | Zbl