Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 197-204

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is concerned with a numerical model for flow in a porous medium containing fractures. The fractures are modeled as $(d-1)$-dimensional surfaces inside the $d$-dimensional matrix domain, and a mixed finite element method containing both $d$ and $(d-1)$ dimensional elements is used. The method allows for fluid exchange between the fractures and the matrix. The method is defined for single-phase Darcy flow throughout the domain and for Forchheimer flow in the fractures. We also consider the case of two-phase flow in a domain in which the fractures and the matrix are of different rock type.
@article{SJVM_2012_15_2_a9,
     author = {J. Jaffr\'e and J. E. Roberts},
     title = {Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {197--204},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/}
}
TY  - JOUR
AU  - J. Jaffré
AU  - J. E. Roberts
TI  - Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 197
EP  - 204
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/
LA  - ru
ID  - SJVM_2012_15_2_a9
ER  - 
%0 Journal Article
%A J. Jaffré
%A J. E. Roberts
%T Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 197-204
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/
%G ru
%F SJVM_2012_15_2_a9
J. Jaffré; J. E. Roberts. Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/