Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 197-204.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is concerned with a numerical model for flow in a porous medium containing fractures. The fractures are modeled as $(d-1)$-dimensional surfaces inside the $d$-dimensional matrix domain, and a mixed finite element method containing both $d$ and $(d-1)$ dimensional elements is used. The method allows for fluid exchange between the fractures and the matrix. The method is defined for single-phase Darcy flow throughout the domain and for Forchheimer flow in the fractures. We also consider the case of two-phase flow in a domain in which the fractures and the matrix are of different rock type.
@article{SJVM_2012_15_2_a9,
     author = {J. Jaffr\'e and J. E. Roberts},
     title = {Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {197--204},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/}
}
TY  - JOUR
AU  - J. Jaffré
AU  - J. E. Roberts
TI  - Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 197
EP  - 204
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/
LA  - ru
ID  - SJVM_2012_15_2_a9
ER  - 
%0 Journal Article
%A J. Jaffré
%A J. E. Roberts
%T Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 197-204
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/
%G ru
%F SJVM_2012_15_2_a9
J. Jaffré; J. E. Roberts. Modeling flow in porous media with fractures; discrete fracture models with matrix-fracture exchange. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 197-204. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a9/

[1] Alboin Clarisse, Jaffré Jérome, Roberts Jean E., Serres Christophe, “Modeling fractures as interfaces for flow and transport in porous media”, Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), Contemp. Math., 295, Amer. Math. Soc., RI, Providence, 2002, 13–24 | DOI | MR | Zbl

[2] Amir Laila, Kern Michel, Martin Vincent, Roberts Jean E., “Décoposition de domaine pour un milieu poreux fracturé: un modèle en 3d avec fractures qui s'intersectent”, ARIMA, 5 (2006), 11–25

[3] Amirat Youcef, “Ecoulements en milieu poreux n'obeissant pas a la loi de Darcy”, RAIRO Model. Math. Anal. Numer., 25:3 (1991), 273–306 | MR | Zbl

[4] Angot Philippe, Boyer Franck, Hubert Florence, “Asymptotic and numerical modelling of flows in fractured porous media”, Mathematical Modelling and Numerical Analysis, 43:2 (2009), 239–275 | DOI | MR | Zbl

[5] Chavent G., Jaffré J., Mathematical Models and Finite Elements for Reservoir Simulation, North Holland, Amsterdam, 1986 | Zbl

[6] D'Angelo Carlo, Scotti Anna, “A mixed finite element method for Darcy flow in fractured porous media with non-matching grids”, ESAIM: Mathematical Modelling and Numerical Analysis, 46:2 (2012), 465–489, (Accepted, 2011) | DOI

[7] Frih Najla, Martin Vincent, Roberts Jean E., Saada Ali, Modeling fractures as interfaces with nonmatching grids, (Submitted)

[8] Frih Najla, Roberts Jean E., Saada Ali, “Modeling fractures as interfaces: a model for Forchheimer fractures”, Comput. Geosci., 12:1 (2008), 91–104 | DOI | MR | Zbl

[9] Knabner P., Roberts J. E., Forchheimer flow in porous media with fractures, (Submitted)

[10] Knabner P., Summ G., Solvability of the mixed formulation for Darcy-Forchheimer flow in porous media, (Submitted) http://www1.am.uni-erlangen.de/members/knabner/Forschung/publikationen.html

[11] Lesinigo Matteo, D'Angelo Carlo, Quarteroni Alfio, “A multiscale Darcy-Brinkman model for fluid flow in fractured porous media”, Numerische Mathematik, 117:4 (2011), 717–752 | DOI | MR | Zbl

[12] Martin Vincent, Jaffré Jérôme, Roberts Jean E., “Modeling fractures and barriers as interfaces for flow in porous media”, SIAM J. Sci. Comput., 26:5 (2005), 1667–1691 | DOI | MR | Zbl

[13] Morales Fernando, Showalter Ralph E., “The narrow fracture approximation by channeled flow”, J. Math. Anal. Appl., 365:1 (2010), 320–331 | DOI | MR | Zbl