Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 175-181.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an original multi-scheme approach to numerical simulation of seismic wave propagation in models with anisotropic formations. In order to simulate wave propagation in anisotropic parts of the model, the Lebedev scheme is used. This scheme is anisotropy-oriented but highly intense in terms of computation. In the main part of the model, a highly efficient standard staggered grids scheme is proposed for use. The two schemes are coupled to ensure the reflection/transmission coefficients to converge with a prescribed order. The algorithm presented combines the universality of the Lebedev scheme and the efficiency of the standard staggered grid scheme.
@article{SJVM_2012_15_2_a6,
     author = {D. M. Vishnevsky and V. V. Lisitsa and V. A. Tcheverda},
     title = {Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {175--181},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/}
}
TY  - JOUR
AU  - D. M. Vishnevsky
AU  - V. V. Lisitsa
AU  - V. A. Tcheverda
TI  - Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 175
EP  - 181
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/
LA  - ru
ID  - SJVM_2012_15_2_a6
ER  - 
%0 Journal Article
%A D. M. Vishnevsky
%A V. V. Lisitsa
%A V. A. Tcheverda
%T Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 175-181
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/
%G ru
%F SJVM_2012_15_2_a6
D. M. Vishnevsky; V. V. Lisitsa; V. A. Tcheverda. Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 175-181. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/

[1] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii osnovnykh differentsialnykh operatorov dlya nekotorykh kraevykh zadach matematicheskoi fiziki. I”, Zhurn. vychisl. matematiki i mat. fiziki, 4:3 (1964), 449–465 | MR

[2] Lisitsa V. V., Vishnevskii D. M., “Ob osobennostyakh skhemy Lebedeva pri modelirovanii uprugikh voln v anizotropnykh sredakh”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 14:2 (2011), 155–167

[3] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR | Zbl

[4] Asvadurov S., Druskin V., Moskow S., “Optimal grids for anisotropic problems”, Electron. Trans. Numer. Anal., 26 (2007), 55–81 | MR | Zbl

[5] Davydycheva S., Druskin V., Habashy T., “An efficient finite-difference scheme for electromagnetic logging in 3d anisotropic inhomogeneous media”, Geophysics, 68:5 (2003), 1525–1535 | DOI

[6] Igel H., Mora P., Riollet B., “Anisotropic wave propagation through finite-difference grids”, Geophysics, 60 (1995), 1203–1216 | DOI

[7] Levander A. R., “Fourth-order finite-difference p-sv seismograms”, Geophysics, 53:11 (1988), 1425–1436 | DOI

[8] Lisitsa V., Lys E., “Reflectionless truncation of target area for axially symmetric anisotropic elasticity”, J. of Computational and Applied Mathematics, 234:6 (2010), 1803–1809 | DOI | MR | Zbl

[9] Lisitsa V., Vishnevskiy D., “Lebedev scheme for the numerical simulation of wave propagation in 3d anisotropic elasticity”, Geophysical Prospecting, 58:4 (2010), 619–635 | DOI

[10] Pissarenko D., Reshetova G. V., Tcheverda V. A., “3d finite-difference synthetic acoustic logging in cylindrical coordinates”, Geophysical Prospecting, 57 (2009), 367–377 | DOI

[11] Saenger E. H., Gold N., Shapiro S. A., “Modeling the propagation of the elastic waves using a modified finite-difference grid”, Wave Motion, 31:1 (2000), 77–92 | DOI | MR | Zbl

[12] Virieux J., “P-sv wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI