Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2012_15_2_a6, author = {D. M. Vishnevsky and V. V. Lisitsa and V. A. Tcheverda}, title = {Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {175--181}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/} }
TY - JOUR AU - D. M. Vishnevsky AU - V. V. Lisitsa AU - V. A. Tcheverda TI - Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 175 EP - 181 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/ LA - ru ID - SJVM_2012_15_2_a6 ER -
%0 Journal Article %A D. M. Vishnevsky %A V. V. Lisitsa %A V. A. Tcheverda %T Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 175-181 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/ %G ru %F SJVM_2012_15_2_a6
D. M. Vishnevsky; V. V. Lisitsa; V. A. Tcheverda. Efficient finite difference multi-scheme approach for simulation of seismic waves in anisotropic media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 175-181. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a6/
[1] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii osnovnykh differentsialnykh operatorov dlya nekotorykh kraevykh zadach matematicheskoi fiziki. I”, Zhurn. vychisl. matematiki i mat. fiziki, 4:3 (1964), 449–465 | MR
[2] Lisitsa V. V., Vishnevskii D. M., “Ob osobennostyakh skhemy Lebedeva pri modelirovanii uprugikh voln v anizotropnykh sredakh”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 14:2 (2011), 155–167
[3] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR | Zbl
[4] Asvadurov S., Druskin V., Moskow S., “Optimal grids for anisotropic problems”, Electron. Trans. Numer. Anal., 26 (2007), 55–81 | MR | Zbl
[5] Davydycheva S., Druskin V., Habashy T., “An efficient finite-difference scheme for electromagnetic logging in 3d anisotropic inhomogeneous media”, Geophysics, 68:5 (2003), 1525–1535 | DOI
[6] Igel H., Mora P., Riollet B., “Anisotropic wave propagation through finite-difference grids”, Geophysics, 60 (1995), 1203–1216 | DOI
[7] Levander A. R., “Fourth-order finite-difference p-sv seismograms”, Geophysics, 53:11 (1988), 1425–1436 | DOI
[8] Lisitsa V., Lys E., “Reflectionless truncation of target area for axially symmetric anisotropic elasticity”, J. of Computational and Applied Mathematics, 234:6 (2010), 1803–1809 | DOI | MR | Zbl
[9] Lisitsa V., Vishnevskiy D., “Lebedev scheme for the numerical simulation of wave propagation in 3d anisotropic elasticity”, Geophysical Prospecting, 58:4 (2010), 619–635 | DOI
[10] Pissarenko D., Reshetova G. V., Tcheverda V. A., “3d finite-difference synthetic acoustic logging in cylindrical coordinates”, Geophysical Prospecting, 57 (2009), 367–377 | DOI
[11] Saenger E. H., Gold N., Shapiro S. A., “Modeling the propagation of the elastic waves using a modified finite-difference grid”, Wave Motion, 31:1 (2000), 77–92 | DOI | MR | Zbl
[12] Virieux J., “P-sv wave propagation in heterogeneous media: Velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI