Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2012_15_2_a4, author = {V. Bonnaillie-No\"el and D. Brancherie and M. Dambrine and G. Vial}, title = {Artificial boundary conditions to compute correctors in linear elasticity}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {157--164}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/} }
TY - JOUR AU - V. Bonnaillie-Noël AU - D. Brancherie AU - M. Dambrine AU - G. Vial TI - Artificial boundary conditions to compute correctors in linear elasticity JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 157 EP - 164 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/ LA - ru ID - SJVM_2012_15_2_a4 ER -
%0 Journal Article %A V. Bonnaillie-Noël %A D. Brancherie %A M. Dambrine %A G. Vial %T Artificial boundary conditions to compute correctors in linear elasticity %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 157-164 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/ %G ru %F SJVM_2012_15_2_a4
V. Bonnaillie-Noël; D. Brancherie; M. Dambrine; G. Vial. Artificial boundary conditions to compute correctors in linear elasticity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/
[1] Bonnaillie-Noël V., Brancherie D., Dambrine M., Hérau F., Tordeux S., Vial G., “Multiscale expansion and numerical approximation for surface defects”, ESAIM Proc., 33 (2011), 22–35 | DOI | Zbl
[2] Bonnaillie-Noël V., Dambrine M., Hérau F., Vial G., “On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain”, SIAM J. Numer. Anal., 42:2 (2010), 931–945 | MR | Zbl
[3] Givoli D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94:1 (1991), 1–29 | DOI | MR | Zbl
[4] Grisvard P., “Problèmes aux limites dans les polygônes. Mode d'emploi”, EDF Bull. Direction Études Rech. Sér. C Math. Inform., 1:3 (1986), 21–59 | MR | Zbl
[5] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, v. 1, Operator Theory: Advances and Applications, 111, Birkhäuser Verlag, 2000, XXIII+435 pp. ; v. 2, Operator Theory: Advances and Applications, 112, XXIII+323 pp. | MR | MR
[6] , 2008 http://perso.univ-rennes1.fr/daniel.martin/melina