Artificial boundary conditions to compute correctors in linear elasticity
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 157-164.

Voir la notice de l'article provenant de la source Math-Net.Ru

We present the derivation of a transparent boundary condition of order two to solve the equations of linear elasticity in a half plane. The resolution of the boundary value problem leads to a noncoercive variational formulation. We also present some numerical examples.
@article{SJVM_2012_15_2_a4,
     author = {V. Bonnaillie-No\"el and D. Brancherie and M. Dambrine and G. Vial},
     title = {Artificial boundary conditions to compute correctors in linear elasticity},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {157--164},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/}
}
TY  - JOUR
AU  - V. Bonnaillie-Noël
AU  - D. Brancherie
AU  - M. Dambrine
AU  - G. Vial
TI  - Artificial boundary conditions to compute correctors in linear elasticity
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 157
EP  - 164
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/
LA  - ru
ID  - SJVM_2012_15_2_a4
ER  - 
%0 Journal Article
%A V. Bonnaillie-Noël
%A D. Brancherie
%A M. Dambrine
%A G. Vial
%T Artificial boundary conditions to compute correctors in linear elasticity
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 157-164
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/
%G ru
%F SJVM_2012_15_2_a4
V. Bonnaillie-Noël; D. Brancherie; M. Dambrine; G. Vial. Artificial boundary conditions to compute correctors in linear elasticity. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 157-164. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a4/

[1] Bonnaillie-Noël V., Brancherie D., Dambrine M., Hérau F., Tordeux S., Vial G., “Multiscale expansion and numerical approximation for surface defects”, ESAIM Proc., 33 (2011), 22–35 | DOI | Zbl

[2] Bonnaillie-Noël V., Dambrine M., Hérau F., Vial G., “On generalized Ventcel's type boundary conditions for Laplace operator in a bounded domain”, SIAM J. Numer. Anal., 42:2 (2010), 931–945 | MR | Zbl

[3] Givoli D., “Non-reflecting boundary conditions”, J. Comput. Phys., 94:1 (1991), 1–29 | DOI | MR | Zbl

[4] Grisvard P., “Problèmes aux limites dans les polygônes. Mode d'emploi”, EDF Bull. Direction Études Rech. Sér. C Math. Inform., 1:3 (1986), 21–59 | MR | Zbl

[5] Maz'ya V., Nazarov S., Plamenevskij B., Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, v. 1, Operator Theory: Advances and Applications, 111, Birkhäuser Verlag, 2000, XXIII+435 pp. ; v. 2, Operator Theory: Advances and Applications, 112, XXIII+323 pp. | MR | MR

[6] , 2008 http://perso.univ-rennes1.fr/daniel.martin/melina