Numerical solution of dynamic problems of elastoplastic deformation of solids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 151-156.

Voir la notice de l'article provenant de la source Math-Net.Ru

Numerical algorithms for solving two-dimensional dynamic problems of elasticity theory were developed based upon several local approximations for each of the required functions. The schemes contain free parameters (constants of dissipation). The explicit form for formulas of the artificial dissipation of solutions allows us to control its size and to build effective both explicit and implicit schemes. As an example, the principle of constructing such schemes is presented for a plane dynamic problem of elasticity theory. We describe a class of problems, for which numerical algorithms are constructed using several local approximations for each of the required functions. Examples of solving applied problems are given.
@article{SJVM_2012_15_2_a3,
     author = {I. O. Bogulskii and Yu. M. Volchkov},
     title = {Numerical solution of dynamic problems of elastoplastic deformation of solids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {151--156},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a3/}
}
TY  - JOUR
AU  - I. O. Bogulskii
AU  - Yu. M. Volchkov
TI  - Numerical solution of dynamic problems of elastoplastic deformation of solids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 151
EP  - 156
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a3/
LA  - ru
ID  - SJVM_2012_15_2_a3
ER  - 
%0 Journal Article
%A I. O. Bogulskii
%A Yu. M. Volchkov
%T Numerical solution of dynamic problems of elastoplastic deformation of solids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 151-156
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a3/
%G ru
%F SJVM_2012_15_2_a3
I. O. Bogulskii; Yu. M. Volchkov. Numerical solution of dynamic problems of elastoplastic deformation of solids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 151-156. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a3/

[1] Ivanov G. V., Volchkov Yu. M., Bogulskii I. O., Anisimov S. A., Kurguzov V. D., Chislennoe reshenie dinamicheskikh zadach uprugoplasticheskogo deformirovaniya tverdykh tel, Sibirskoe universitetskoe izd-vo, Novosibirsk, 2002 | MR

[2] Bogulskii I. O., “A monotonicity schemes of second-order accuracy for solving of problems of deformable solids dynamics”, Modelling Conrtol, 53:2 (1994), 19–28

[3] Bogulskii I. O., “Ob odnom chislennom algoritme resheniya zadach rasprostraneniya seismicheskikh voln v vertikalno-neodnorodnoi srede”, Geologiya i geofizika, 38:9 (1997), 1549–1560

[4] Bogulskii I. O., Volchkov Yu. M., “Determination of physical and geometrical characteristics of layered inhomogeneous elastic medium”, J. Inv. Ill-Posed Probl., 18 (2011), 895–915 | DOI | MR

[5] Bogulskii I. O., Volchkov Yu. M., “Ob odnoi chislennoi skheme resheniya trekhmernoi zadachi dinamiki uprugikh tel”, Matematika v prilozheniyakh, Tez. dokl. Vseros. konf., priuroch. k 80-letiyu akad. S. K. Godunova (Novosibirsk, 20–24 iyulya 2009), Izd-vo Instituta matematiki SO RAN, Novosibirsk, 2009, 52–53

[6] Volchkov Yu. M., “Kvaziodnomernaya model vzaimodeistviya udarnika i pregrady”, PMTF, 41:5 (2000), 205–210 | MR | Zbl