Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 141-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we construct an asymptotic expansion of a time-harmonic wave scattered by $N$ small spheres. This construction is based on the method of matched asymptotic expansions. Error estimates give a theoretical background to the approach.
@article{SJVM_2012_15_2_a2,
     author = {A. Bendali and P.-H. Cocquet and S. Tordeux},
     title = {Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {141--149},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/}
}
TY  - JOUR
AU  - A. Bendali
AU  - P.-H. Cocquet
AU  - S. Tordeux
TI  - Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 141
EP  - 149
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/
LA  - ru
ID  - SJVM_2012_15_2_a2
ER  - 
%0 Journal Article
%A A. Bendali
%A P.-H. Cocquet
%A S. Tordeux
%T Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 141-149
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/
%G ru
%F SJVM_2012_15_2_a2
A. Bendali; P.-H. Cocquet; S. Tordeux. Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 141-149. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/

[1] Antoine X., Pincon B., Ramdani K., Thierry B., “Far-field modelling of electromagnetic time-reversal and application to selective focusing on small scatterers”, SIAM J. of Applied Math., 69:3 (2008), 830–844 | DOI | MR | Zbl

[2] Bendali A., Lemrabet K., “The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation”, SIAM J. of Applied Math., 6:5 (1996), 1664–1693 | DOI | MR | Zbl

[3] Bendali A., Lemrabet K., “Asymptotic analysis of the scattering of a time-harmonic wave by a perfectly conducting metal coated with a thin dielectric shell”, Asymptotic Analysis, 57 (2008), 199–227 | MR | Zbl

[4] Bendali A., Makhlouf A., Tordeux S., “Justification of the cavity model in the numerical simulation of patch antennas by the method of matched asymptotic expansions”, SIAM Multiscale Modeling and Simulation, 8:5 (2010), 1902–1922 | DOI | MR | Zbl

[5] Claeys X., Haddar H., Joly P., Etude d'un problème modèle pour la diffraction par des fils minces par dèveloppements asymptotiques raccordés cas 2d, Research Report RR-5839, INRIA Rocquencourt, 2006

[6] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Series in Applied Mathematics, 93, Springer-Verlag, New-York–Berlin–Heidelberg, 1992 | MR | Zbl

[7] Cousteix J., Mauss J., Asymptotic Analysis and Boundary Layers, Springer-Verlag, New-York, 2007 | MR | Zbl

[8] Dyke M. V., Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, California, 1975 | MR | Zbl

[9] Eckhaus W., Matched asymptotic expansions and singular perturbations, North-Holland Mathematics Studies, 6, North-Holland Publishing Company, Amsterdam–London, 1973 | MR | Zbl

[10] Gumerov N. A., Duraiswamy R., Fast Multipole Method for the Helmholtz Equation in Three Dimensions, Elsevier, Amsterdam, 2004

[11] Il'in A. M., Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems, American Mathematical Society, Providence, 1992 | MR

[12] Joly P., Tordeux S., “Matching of asymptotic expansions for wave propagation in media with thin slots I: The asymptotic expansion”, SIAM Multiscale Modeling and Simulation, 5:1 (2006), 304–336 | DOI | MR | Zbl

[13] Maz'ya V. G., Poborchi S. V. Extension of functions in sobolev spaces on parameter dependent domains, Mathematische Nachrichten, 178 (1996), 5–41 | DOI | MR

[14] Wilcox C. H., Scattering Theory for the d'Alembert Equation in Exterior Domains, Lecture Notes in Math., 442, Springer-Verlag, Berlin, 1975 | MR | Zbl