Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2012_15_2_a2, author = {A. Bendali and P.-H. Cocquet and S. Tordeux}, title = {Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {141--149}, publisher = {mathdoc}, volume = {15}, number = {2}, year = {2012}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/} }
TY - JOUR AU - A. Bendali AU - P.-H. Cocquet AU - S. Tordeux TI - Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 141 EP - 149 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/ LA - ru ID - SJVM_2012_15_2_a2 ER -
%0 Journal Article %A A. Bendali %A P.-H. Cocquet %A S. Tordeux %T Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 141-149 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/ %G ru %F SJVM_2012_15_2_a2
A. Bendali; P.-H. Cocquet; S. Tordeux. Scattering of a~scalar time-harmonic wave by~$N$ small spheres by the method of matched asymptotic expansions. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 141-149. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a2/
[1] Antoine X., Pincon B., Ramdani K., Thierry B., “Far-field modelling of electromagnetic time-reversal and application to selective focusing on small scatterers”, SIAM J. of Applied Math., 69:3 (2008), 830–844 | DOI | MR | Zbl
[2] Bendali A., Lemrabet K., “The effect of a thin coating on the scattering of a time-harmonic wave for the Helmholtz equation”, SIAM J. of Applied Math., 6:5 (1996), 1664–1693 | DOI | MR | Zbl
[3] Bendali A., Lemrabet K., “Asymptotic analysis of the scattering of a time-harmonic wave by a perfectly conducting metal coated with a thin dielectric shell”, Asymptotic Analysis, 57 (2008), 199–227 | MR | Zbl
[4] Bendali A., Makhlouf A., Tordeux S., “Justification of the cavity model in the numerical simulation of patch antennas by the method of matched asymptotic expansions”, SIAM Multiscale Modeling and Simulation, 8:5 (2010), 1902–1922 | DOI | MR | Zbl
[5] Claeys X., Haddar H., Joly P., Etude d'un problème modèle pour la diffraction par des fils minces par dèveloppements asymptotiques raccordés cas 2d, Research Report RR-5839, INRIA Rocquencourt, 2006
[6] Colton D., Kress R., Inverse acoustic and electromagnetic scattering theory, Series in Applied Mathematics, 93, Springer-Verlag, New-York–Berlin–Heidelberg, 1992 | MR | Zbl
[7] Cousteix J., Mauss J., Asymptotic Analysis and Boundary Layers, Springer-Verlag, New-York, 2007 | MR | Zbl
[8] Dyke M. V., Perturbation Methods in Fluid Mechanics, The Parabolic Press, Stanford, California, 1975 | MR | Zbl
[9] Eckhaus W., Matched asymptotic expansions and singular perturbations, North-Holland Mathematics Studies, 6, North-Holland Publishing Company, Amsterdam–London, 1973 | MR | Zbl
[10] Gumerov N. A., Duraiswamy R., Fast Multipole Method for the Helmholtz Equation in Three Dimensions, Elsevier, Amsterdam, 2004
[11] Il'in A. M., Matching of Asymptotic Expansions of Solutions of Boundary-Value Problems, American Mathematical Society, Providence, 1992 | MR
[12] Joly P., Tordeux S., “Matching of asymptotic expansions for wave propagation in media with thin slots I: The asymptotic expansion”, SIAM Multiscale Modeling and Simulation, 5:1 (2006), 304–336 | DOI | MR | Zbl
[13] Maz'ya V. G., Poborchi S. V. Extension of functions in sobolev spaces on parameter dependent domains, Mathematische Nachrichten, 178 (1996), 5–41 | DOI | MR
[14] Wilcox C. H., Scattering Theory for the d'Alembert Equation in Exterior Domains, Lecture Notes in Math., 442, Springer-Verlag, Berlin, 1975 | MR | Zbl