A wave method for multiple waves suppression for any complex subsurface geometries
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 229-233.

Voir la notice de l'article provenant de la source Math-Net.Ru

A wave method for suppression of multiple waves that does not require knowledge of a depth-velocity medium model has been developed. The method is constructed so as to completely suppress multiple waves in the case of a layer in a half-space. This is the principle distinction from the existing methods. In particular, this leads to the fact that no a priori data about the medium structure is required and the depth-velocity medium model is considered unknown. The efficiency of the method for arbitrary 3D plane-layered media is demonstrated both theoretically and numerically. Examples of the method application to real media showing a substantial decrease in the multiple wave amplitudes without distortion of the dynamics of useful reflections are given.
@article{SJVM_2012_15_2_a13,
     author = {A. G. Fatyanov},
     title = {A wave method for multiple waves suppression for any complex subsurface geometries},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {229--233},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a13/}
}
TY  - JOUR
AU  - A. G. Fatyanov
TI  - A wave method for multiple waves suppression for any complex subsurface geometries
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 229
EP  - 233
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a13/
LA  - ru
ID  - SJVM_2012_15_2_a13
ER  - 
%0 Journal Article
%A A. G. Fatyanov
%T A wave method for multiple waves suppression for any complex subsurface geometries
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 229-233
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a13/
%G ru
%F SJVM_2012_15_2_a13
A. G. Fatyanov. A wave method for multiple waves suppression for any complex subsurface geometries. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 229-233. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a13/

[1] Ampilov Yu. P., Ot seismicheskoi interpretatsii k modelirovaniyu i otsenke mestorozhdenii nefti i gaza, Spektr, M., 2008

[2] Denisov M. S., “O podavlenii kratnykh voln pri obrabotke rezultatov morskoi ploschadnoi seismorazvedki. Chasti 1–2”, Tekhnologii seismorazvedki, 2009, no. 1, 18–35

[3] Kozlov E. A., Raspoznavanie i podavlenie mnogokratnykh voln v seismorazvedke, Nedra, M., 1982

[4] Orlov Yu. A., “Operator udaleniya kratnykh voln”, Doklady RAN, 418:4 (2008), 536–538 | Zbl

[5] Fatyanov A. G., “Poluanaliticheskii metod resheniya pryamykh dinamicheskikh zadach v sloistykh sredakh”, Doklady RAN, 310:2 (1990), 323–327 | MR

[6] Fatyanov A. G., “Matematicheskoe modelirovanie volnovykh polei v sredakh s krivolineinymi granitsami”, Doklady RAN, 401:4 (2005), 529–532

[7] Fatyanov A. G., Miroshnikov V. V., “Energeticheskii metod rascheta funktsii Grina v mnogomerno-neodnorodnykh sredakh”, Doklady RAN, 351:2 (1996), 264–266

[8] Fatyanov A. G., “Analiticheskoe modelirovanie seismicheskikh volnovykh polei i volnovoi metod podavleniya kratnykh voln”, Tekhnologii seismorazvedki, 2010, no. 2, 16–22