Non-reflecting boundary condition on ellipsoidal boundary
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 131-139
Voir la notice de l'article provenant de la source Math-Net.Ru
Modeling of wave propagation problems using finite element methods usually requires the truncation of the computation domain around the scatterer of interest. Absorbing boundary conditions are classically considered in order to avoid spurious reflections. In this paper, we investigate some properties of the Dirichlet to Neumann map posed on a spheroidal boundary in the context of the Helmholtz equation.
@article{SJVM_2012_15_2_a1,
author = {H. Barucq and A.-G. Dupouy St-Guirons and S. Tordeux},
title = {Non-reflecting boundary condition on ellipsoidal boundary},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {131--139},
publisher = {mathdoc},
volume = {15},
number = {2},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/}
}
TY - JOUR AU - H. Barucq AU - A.-G. Dupouy St-Guirons AU - S. Tordeux TI - Non-reflecting boundary condition on ellipsoidal boundary JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 131 EP - 139 VL - 15 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/ LA - ru ID - SJVM_2012_15_2_a1 ER -
%0 Journal Article %A H. Barucq %A A.-G. Dupouy St-Guirons %A S. Tordeux %T Non-reflecting boundary condition on ellipsoidal boundary %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 131-139 %V 15 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/ %G ru %F SJVM_2012_15_2_a1
H. Barucq; A.-G. Dupouy St-Guirons; S. Tordeux. Non-reflecting boundary condition on ellipsoidal boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 131-139. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/