Non-reflecting boundary condition on ellipsoidal boundary
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 131-139

Voir la notice de l'article provenant de la source Math-Net.Ru

Modeling of wave propagation problems using finite element methods usually requires the truncation of the computation domain around the scatterer of interest. Absorbing boundary conditions are classically considered in order to avoid spurious reflections. In this paper, we investigate some properties of the Dirichlet to Neumann map posed on a spheroidal boundary in the context of the Helmholtz equation.
@article{SJVM_2012_15_2_a1,
     author = {H. Barucq and A.-G. Dupouy St-Guirons and S. Tordeux},
     title = {Non-reflecting boundary condition on ellipsoidal boundary},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {131--139},
     publisher = {mathdoc},
     volume = {15},
     number = {2},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/}
}
TY  - JOUR
AU  - H. Barucq
AU  - A.-G. Dupouy St-Guirons
AU  - S. Tordeux
TI  - Non-reflecting boundary condition on ellipsoidal boundary
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 131
EP  - 139
VL  - 15
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/
LA  - ru
ID  - SJVM_2012_15_2_a1
ER  - 
%0 Journal Article
%A H. Barucq
%A A.-G. Dupouy St-Guirons
%A S. Tordeux
%T Non-reflecting boundary condition on ellipsoidal boundary
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 131-139
%V 15
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/
%G ru
%F SJVM_2012_15_2_a1
H. Barucq; A.-G. Dupouy St-Guirons; S. Tordeux. Non-reflecting boundary condition on ellipsoidal boundary. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 2, pp. 131-139. http://geodesic.mathdoc.fr/item/SJVM_2012_15_2_a1/