A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 83-100

Voir la notice de l'article provenant de la source Math-Net.Ru

A new scheme of a posteriori accuracy estimation for approximate solutions of ill-posed inverse problems is presented along with an algorithm of calculating this estimation. A new notion of extra-optimal regularizing algorithm is introduced as a method for solving ill-posed inverse problems having optimal in order a posteriori accuracy estimation. Sufficient conditions of extra-optimality are formulated and an example of extra-optimal regularizing algorithm is given. The developed theory is illustrated by numerical experiments.
@article{SJVM_2012_15_1_a6,
     author = {A. S. Leonov},
     title = {A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {83--100},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a6/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 83
EP  - 100
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a6/
LA  - ru
ID  - SJVM_2012_15_1_a6
ER  - 
%0 Journal Article
%A A. S. Leonov
%T A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 83-100
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a6/
%G ru
%F SJVM_2012_15_1_a6
A. S. Leonov. A posteriori accuracy estimations of solutions of ill-posed inverse problems and extra-optimal regularizing algorithms for their solution. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 83-100. http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a6/