Numerical analysis of stochastic oscillators on supercomputers
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 31-43.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we investigate the numerical analysis problem of stochastic differential equations (SDEs) with oscillating solutions. The dependence of mathematical expectation and dispersion of the SDE numerical solution on the mesh size of integrating the generalized Euler method is determined. The results of numerical experiments with simulation of linear and nonlinear stochastic oscillators on the supercomputer of the Siberian Supercomputer Center are presented.
@article{SJVM_2012_15_1_a2,
     author = {S. S. Artemiev and A. A. Ivanov and V. D. Korneev},
     title = {Numerical analysis of stochastic oscillators on supercomputers},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {31--43},
     publisher = {mathdoc},
     volume = {15},
     number = {1},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a2/}
}
TY  - JOUR
AU  - S. S. Artemiev
AU  - A. A. Ivanov
AU  - V. D. Korneev
TI  - Numerical analysis of stochastic oscillators on supercomputers
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2012
SP  - 31
EP  - 43
VL  - 15
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a2/
LA  - ru
ID  - SJVM_2012_15_1_a2
ER  - 
%0 Journal Article
%A S. S. Artemiev
%A A. A. Ivanov
%A V. D. Korneev
%T Numerical analysis of stochastic oscillators on supercomputers
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2012
%P 31-43
%V 15
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a2/
%G ru
%F SJVM_2012_15_1_a2
S. S. Artemiev; A. A. Ivanov; V. D. Korneev. Numerical analysis of stochastic oscillators on supercomputers. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 31-43. http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a2/

[1] Dimentberg M. F., Nelineinye stokhasticheskie zadachi mekhanicheskikh kolebanii, Nauka, M., 1980 | MR

[2] Babitskii V. I., Teoriya vibroudarnykh sistem, Nauka, M., 1978 | MR

[3] Bykov V. V., Tsifrovoe modelirovanie v statisticheskoi radiotekhnike, Izd-vo Sovetskoe radio, M., 1971

[4] Kolovskii M. Z., Nelineinaya teoriya vibrozaschitnykh sistem, Nauka, M., 1966

[5] Malakhov A. N., Fluktuatsii v avtokolebatelnykh sistemakh, Nauka, M., 1968

[6] Palmov V. A., Kolebaniya uprugo-plasticheskikh tel, Nauka, M., 1976

[7] Rytov S. M., Vvedenie v statisticheskuyu radiofiziku, Nauka, M., 1966

[8] Artemev S. S., Yakunin M. A., Matematicheskoe i statisticheskoe modelirovanie v finansakh, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008

[9] Artemev S. S., Chislennye metody resheniya zadachi Koshi dlya sistem obyknovennykh i stokhasticheskikh differentsialnykh uravnenii, Izd-vo VTs SO RAN, Novosibirsk, 1993

[10] Milshtein G. N., Chislennoe integrirovanie stokhasticheskikh differentsialnykh uravnenii, Izd-vo SGU, Sverdlovsk, 1988 | MR

[11] Artemev S. S., Korneev V. D., “Chislennoe reshenie stokhasticheskikh differentsialnykh uravnenii na superkompyuterakh”, Sib. zhurn. vychisl. matematiki, 14:1 (2011), 5–17, RAN. Sib. otd-nie, Novosibirsk

[12] Ermakov S. M., Mikhailov G. A., Statisticheskoe modelirovanie, Nauka, M., 1982 | MR

[13] Korneev V. D., Parallelnoe programmirovanie v MPI, Institut kompyuternykh issledovanii, Moskva–Izhevsk, 2003

[14] V. D. Korneev (red.), Parallelnoe programmirovanie klasterov, Ucheb. posobie, Izd-vo NGTU, Novosibirsk, 2008

[15] Marchenko M. A., “Kompleks programm MONC dlya raspredelënnykh vychislenii metodom Monte-Karlo”, Sib. zhurn. vychisl. matematiki, 7:1 (2004), 43–55, RAN. Sib. otd-nie, Novosibirsk | Zbl

[16] http://software.intel.com/ru-ru/intel-mkl/

[17] Snir M., Otto S. W., Huss-Lederman S., Walker D., Dongarra J., MPI: The Complete Reference, MIT Press, Boston, 1996

[18] Panteleev A. V., Rybakov K. A., Sotskova I. A., Spektralnyi metod analiza nelineinykh stokhasticheskikh sistem upravleniya, Vuzovskaya kniga, M., 2006