Enumeration problems solutions for serial sequences with a~permanent difference in adjacent series heights
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 21-29
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, the sets of $n$-value serial sequences are considered. The structure of such series is defined by constraints on the number of series, the length of series, and the height of series. The problem of recalculation, numeration, and generation has been solved for the sets of ascending, descending, and one-transitive sequences with permanent differences in the adjacent series heights.
@article{SJVM_2012_15_1_a1,
author = {V. A. Amelkin},
title = {Enumeration problems solutions for serial sequences with a~permanent difference in adjacent series heights},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {21--29},
publisher = {mathdoc},
volume = {15},
number = {1},
year = {2012},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a1/}
}
TY - JOUR AU - V. A. Amelkin TI - Enumeration problems solutions for serial sequences with a~permanent difference in adjacent series heights JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2012 SP - 21 EP - 29 VL - 15 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a1/ LA - ru ID - SJVM_2012_15_1_a1 ER -
%0 Journal Article %A V. A. Amelkin %T Enumeration problems solutions for serial sequences with a~permanent difference in adjacent series heights %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2012 %P 21-29 %V 15 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a1/ %G ru %F SJVM_2012_15_1_a1
V. A. Amelkin. Enumeration problems solutions for serial sequences with a~permanent difference in adjacent series heights. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 15 (2012) no. 1, pp. 21-29. http://geodesic.mathdoc.fr/item/SJVM_2012_15_1_a1/