Stability of a~three-layer operator-difference scheme for coupled thermoelasticity problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 345-360.

Voir la notice de l'article provenant de la source Math-Net.Ru

Stability of a three-layer operator-difference scheme with weights that generalizes a class of difference and projection-difference schemes for linear coupled thermoelasticity problems is analyzed. Energy estimates for the solution and its first-order grid derivative are obtained.
@article{SJVM_2011_14_4_a1,
     author = {S. E. Zhelezovskii},
     title = {Stability of a~three-layer operator-difference scheme for coupled thermoelasticity problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {345--360},
     publisher = {mathdoc},
     volume = {14},
     number = {4},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a1/}
}
TY  - JOUR
AU  - S. E. Zhelezovskii
TI  - Stability of a~three-layer operator-difference scheme for coupled thermoelasticity problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 345
EP  - 360
VL  - 14
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a1/
LA  - ru
ID  - SJVM_2011_14_4_a1
ER  - 
%0 Journal Article
%A S. E. Zhelezovskii
%T Stability of a~three-layer operator-difference scheme for coupled thermoelasticity problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 345-360
%V 14
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a1/
%G ru
%F SJVM_2011_14_4_a1
S. E. Zhelezovskii. Stability of a~three-layer operator-difference scheme for coupled thermoelasticity problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 4, pp. 345-360. http://geodesic.mathdoc.fr/item/SJVM_2011_14_4_a1/

[1] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[2] Zhelezovskii S. E., “O gladkosti resheniya abstraktnoi svyazannoi zadachi tipa zadach termouprugosti”, Zhurn. vychisl. matem. i mat. fiziki, 50:7 (2010), 1240–1257 | MR | Zbl

[3] Zhelezovskii S. E., “Otsenki pogreshnosti proektsionno-raznostnogo metoda dlya odnoi giperbolo-parabolicheskoi sistemy abstraktnykh differentsialnykh uravnenii”, Sib. zhurn. vychisl. matematiki. RAN. Sib. otd-nie, 13:3 (2010), 269–284 | Zbl

[4] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989 | MR

[5] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, 2-e izd., Editorial URSS, M., 2005

[6] Samarskii A. A., Gulin A. V., “Kriterii ustoichivosti semeistva raznostnykh skhem”, Dokl. RAN, 330:6 (1993), 694–695 | MR

[7] Samarskii A. A., Vabischevich P. N., Matus P. P., “Silnaya ustoichivost differentsialno-operatornykh i operatorno-raznostnykh skhem”, Dokl. RAN, 356:4 (1997), 455–457 | MR

[8] Samarskii A. A., Vabischevich P. N., Makarevich E. L., Matus P. P., “Ustoichivost trekhsloinykh raznostnykh skhem na neravnomernykh po vremeni setkakh”, Dokl. RAN, 376:6 (2001), 738–741 | MR

[9] Samarskii A. A., Gulin A. V., Vukoslavchevich V., “Kriterii ustoichivosti dvukhsloinykh i trekhsloinykh raznostnykh skhem”, Diff. uravneniya, 34:7 (1998), 975–979 | MR

[10] Vabischevich P. N., Matus P. P., Scheglik V. S., “Raznostnye skhemy s peremennymi vesami dlya evolyutsionnykh uravnenii vtorogo poryadka”, Dokl. AN Belarusi, 38:3 (1994), 13–15 | MR

[11] Gulin A. V., Simmetrizuemye raznostnye skhemy, Izd-vo MGU, M., 2004

[12] Wenk H.-U., “On coupled thermoelastic vibration of geometrically nonlinear thin plates satisfying generalized mechanical and thermal conditions on the boundary and on the surface”, Apl. Mat., 27:6 (1982), 393–416 | MR | Zbl

[13] Chrzȩszczyk A., “On the regularity, uniqueness and continuous dependence for generalized solutions of some coupled problems in nonlinear theory of thermoelastic shells”, Arch. Mech., 38:1–2 (1986), 97–102 | MR | Zbl

[14] Zhelezovskii S. E., Ivanov G. M., Krivonogov N. P., “O skorosti skhodimosti approksimatsii Galerkina dlya nelineinoi zadachi termouprugosti tonkikh plastin”, Zhurn. vychisl. matem. i mat. fiziki, 38:1 (1998), 157–168 | MR | Zbl

[15] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galerkina dlya nelineinoi svyazannoi zadachi termouprugosti obolochek s trekhmernym uravneniem teploprovodnosti”, Zhurn. vychisl. matem. i mat. fiziki, 45:9 (2005), 1677–1690 | MR | Zbl