Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_3_a4, author = {D. K. Potapov}, title = {A continuous approximation for {a~1D} analogue of the {Gol'dshtik} model for separated flows of incompressible fluid}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {291--296}, publisher = {mathdoc}, volume = {14}, number = {3}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a4/} }
TY - JOUR AU - D. K. Potapov TI - A continuous approximation for a~1D analogue of the Gol'dshtik model for separated flows of incompressible fluid JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 291 EP - 296 VL - 14 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a4/ LA - ru ID - SJVM_2011_14_3_a4 ER -
%0 Journal Article %A D. K. Potapov %T A continuous approximation for a~1D analogue of the Gol'dshtik model for separated flows of incompressible fluid %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 291-296 %V 14 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a4/ %G ru %F SJVM_2011_14_3_a4
D. K. Potapov. A continuous approximation for a~1D analogue of the Gol'dshtik model for separated flows of incompressible fluid. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 3, pp. 291-296. http://geodesic.mathdoc.fr/item/SJVM_2011_14_3_a4/
[1] Goldshtik M. A., “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Dokl. AN SSSR, 147:6 (1962), 1310–1313
[2] Potapov D. K., “Matematicheskaya model otryvnykh techenii neszhimaemoi zhidkosti”, Izvestiya RAEN. Ser. MMMIU, 8:3–4 (2004), 163–170
[3] Potapov D. K., “Nepreryvnye approksimatsii zadachi Goldshtika”, Matem. zametki, 87:2 (2010), 262–266 | MR | Zbl
[4] Krasnoselskii M. A., Pokrovskii A. V., “Uravneniya s razryvnymi nelineinostyami”, Dokl. AN SSSR, 248:5 (1979), 1056–1059 | MR
[5] Potapov D. K., “Ustoichivost osnovnykh kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu v koertsitivnom sluchae”, Izvestiya RAEN. Ser. MMMIU, 9:1–2 (2005), 159–165
[6] Pavlenko V. N., Potapov D. K., “Approksimatsiya kraevykh zadach ellipticheskogo tipa so spektralnym parametrom i razryvnoi nelineinostyu”, Izvestiya vuzov. Matematika, 2005, no. 4, 49–55 | MR | Zbl
[7] Potapov D. K., “Approksimatsiya zadachi Dirikhle dlya uravneniya ellipticheskogo tipa vysokogo poryadka so spektralnym parametrom i razryvnoi nelineinostyu”, Diff. uravneniya, 43:7 (2007), 1002–1003 | MR | Zbl
[8] Pavlenko V. N., Potapov D. K., “O suschestvovanii lucha sobstvennykh znachenii dlya uravnenii s razryvnymi operatorami”, Sib. mat. zhurn., 42:4 (2001), 911–919 | MR | Zbl
[9] Potapov D. K., “Ob odnoi otsenke sverkhu velichiny bifurkatsionnogo parametra v zadachakh na sobstvennye znacheniya dlya uravnenii ellipticheskogo tipa s razryvnymi nelineinostyami”, Diff. uravneniya, 44:5 (2008), 715–716 | MR | Zbl
[10] Krasnoselskii M. A., Pokrovskii A. V., “Pravilnye resheniya uravnenii s razryvnymi nelineinostyami”, Dokl. AN SSSR, 226:3 (1976), 506–509 | MR