Preconditioning in the numerical solution of Dirichlet problem for the biharmonic equation
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 205-213.

Voir la notice de l'article provenant de la source Math-Net.Ru

The iterative algorithm for the numerical solution of the biharmonic equation with the first kind boundary conditions (a clamped plate) is investigated. At every step of this iterative method it is necessary to solve two Dirichlet problems for Poisson's equation. Constants of energy equivalence for the optimization of the iterative method have been obtained.
@article{SJVM_2011_14_2_a6,
     author = {S. B. Sorokin},
     title = {Preconditioning in the numerical solution of {Dirichlet} problem for the biharmonic equation},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {205--213},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a6/}
}
TY  - JOUR
AU  - S. B. Sorokin
TI  - Preconditioning in the numerical solution of Dirichlet problem for the biharmonic equation
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 205
EP  - 213
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a6/
LA  - ru
ID  - SJVM_2011_14_2_a6
ER  - 
%0 Journal Article
%A S. B. Sorokin
%T Preconditioning in the numerical solution of Dirichlet problem for the biharmonic equation
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 205-213
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a6/
%G ru
%F SJVM_2011_14_2_a6
S. B. Sorokin. Preconditioning in the numerical solution of Dirichlet problem for the biharmonic equation. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 205-213. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a6/

[1] Paltsev B. V., “O razlozhenii reshenii zadachi Dirikhle i smeshannoi zadachi dlya bigarmonicheskogo uravneniya v ryad po resheniyam raspadayuschikhsya zadach”, Zhurn. vychisl. matematiki i mat. fiziki, 6:1 (1966), 43–51 | MR | Zbl

[2] Bugrov A. N., “Metod fiktivnykh oblastei dlya uravnenii s chastnymi proizvodnymi ellipticheskogo tipa”, Chislennye metody resheniya zadach teorii uprugosti i plastichnosti, Materialy V Vsesoyuznoi konferentsii, Chast II, Izd-vo ITPM SO RAN SSSR, Novosibirsk, 1978, 24–35

[3] Glovinskii R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[4] Vabischevich P. N., “Chislennoe reshenie kraevykh zadach dlyaellipticheskikh uravnenii chetvertogo poryadka”, Zhurn. vychisl. matematiki i mat. fiziki, 24:8 (1984), 1196–1206 | MR | Zbl

[5] Konovalov A. N., Chislennoe reshenie zadachi teorii uprugosti, Nauka, Novosibirsk, 1968

[6] Konovalov A. N., “O chislennom reshenii smeshannoi zadachi uprugosti”, Zhurn. vychisl. matematiki i mat. fiziki, 9:2 (1969), 469–474 | MR | Zbl

[7] Almukhanbetov N. A., “Chislennaya realizatsiya kraevykh uslovii v zadachakh uprugosti”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 3:5 (1972), 3–17 | MR

[8] Gurov B. G., Eroshenko E. P., Kutnyashenko V. M., “Ob odnom metode realizatsii granichnykh uslovii v zadachakh teorii uprugosti”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 4:5 (1973), 8–16

[9] Samarskii A. A., Andreev V. B., Raznostnye metody dlya ellipticheskikh uravnenii, Nauka, M., 1979 | MR

[10] Samarskii A. A., Nikolaev E. S., Metody resheniya setochnykh uravnenii, Nauka, M., 1978 | MR

[11] Marchuk G. I., Metody vychislitelnoi matematiki, Nauka, M., 1980 | MR