Formulas for setting a~location of the wavefront propagating in a~medium with power dependence of velocity on a~coordinate
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 169-178.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the 2D eikonal equation $f_x^2+f_y^2=(ky)^{2\alpha}$ is considered. If $f$ is its solution, the relation $f(x,y)=C$ sets the wavefront location. However, obtaining solutions is associated with some difficulties. In this paper, the author develops the earlier proposed technique that enables the detection of a parametric curve to set the wavefront without solving the above equation.
@article{SJVM_2011_14_2_a4,
     author = {E. D. Moskalensky},
     title = {Formulas for setting a~location of the wavefront propagating in a~medium with power dependence of velocity on a~coordinate},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {169--178},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a4/}
}
TY  - JOUR
AU  - E. D. Moskalensky
TI  - Formulas for setting a~location of the wavefront propagating in a~medium with power dependence of velocity on a~coordinate
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 169
EP  - 178
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a4/
LA  - ru
ID  - SJVM_2011_14_2_a4
ER  - 
%0 Journal Article
%A E. D. Moskalensky
%T Formulas for setting a~location of the wavefront propagating in a~medium with power dependence of velocity on a~coordinate
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 169-178
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a4/
%G ru
%F SJVM_2011_14_2_a4
E. D. Moskalensky. Formulas for setting a~location of the wavefront propagating in a~medium with power dependence of velocity on a~coordinate. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 169-178. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a4/

[1] Borovskikh A. V., “Dvumernoe uravnenie eikonala”, Sib. mat. zhurnal, 47:5 (2006), 993–1018 | MR | Zbl

[2] Moskalenskii E. D., “O nakhozhdenii fronta volny, opisyvaemoi dvumernym uravneniem eikonala, dlya sluchaya, kogda skorost v srede zavisit ot odnoi prostranstvennoi koordinaty”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 13:1 (2010), 67–73

[3] Marchuk An. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Novosibirsk, 1983 | MR | Zbl

[4] Savelov A. A., Ploskie krivye. Sistematika, svoistva, primeneniya, Librokom, M., 2010