Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2011_14_2_a3, author = {V. V. Lisitsa and D. M. Vishnevsky}, title = {On peculiarities of the {Lebedev} scheme for simulation of elastic wave propagation in anisotropic media}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {155--167}, publisher = {mathdoc}, volume = {14}, number = {2}, year = {2011}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a3/} }
TY - JOUR AU - V. V. Lisitsa AU - D. M. Vishnevsky TI - On peculiarities of the Lebedev scheme for simulation of elastic wave propagation in anisotropic media JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 155 EP - 167 VL - 14 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a3/ LA - ru ID - SJVM_2011_14_2_a3 ER -
%0 Journal Article %A V. V. Lisitsa %A D. M. Vishnevsky %T On peculiarities of the Lebedev scheme for simulation of elastic wave propagation in anisotropic media %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 155-167 %V 14 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a3/ %G ru %F SJVM_2011_14_2_a3
V. V. Lisitsa; D. M. Vishnevsky. On peculiarities of the Lebedev scheme for simulation of elastic wave propagation in anisotropic media. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 155-167. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a3/
[1] Vavakin A. S., Salganik R. L., “Effektivnye uprugie kharakteristiki tel s izolirovannymi treschinami, polostyami i zhestkimi neodnorodnostyami”, Izvestiya AN SSSR. Mekhanika tverdogo tela, 1978, no. 2, 95–107
[2] Goldin S. V., Seismicheskie volny v anizotropnykh sredakh, Izd-vo SO RAN, Novosibirsk, 2008
[3] Lebedev V. I., “Raznostnye analogi ortogonalnykh razlozhenii, osnovnykh differentsialnykh operatorov dlya nekotorykh kraevykh zadach matematicheskoi fiziki. I”, Zhurn. vychisl. matematiki i mat. fiziki, 4:3 (1964), 449–465 | MR | Zbl
[4] Lisitsa V. V., “Optimalnye setki dlya resheniya volnovogo uravneniya s peremennymi koeffitsientami”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 8:3 (2005), 219–229 | Zbl
[5] Shokin Yu. I., Yanenko N. N., Metod differentsialnogo priblizheniya. Primenenie k gazovoi dinamike, Nauka, Novosibirsk, 1985 | MR | Zbl
[6] Asvadurov S., Druskin V., Moskow S., “Optimal grids for anisotropic problems”, Electron. Trans. Numer. Anal., 26 (2007), 55–81 | MR | Zbl
[7] Backus G. E., “Long-wave elastic anisotropy produced by horizontal layering”, J. of Geophysical Research, 67:11 (1962), 4427–4440 | DOI
[8] Bansal R., Sen M. K., “Finite-difference modelling of S-wave splitting in anisotropic media”, Geophysical Prospecting, 56:3 (2008), 293–312 | DOI
[9] Bernth H., Chapman C., “A comparisson of finite-difference grids for anisotropic elastic modelling”, Expanded Abstracts of 72nd EAGE Conference and Exposition, Spain, Barcelona, 2010, G008
[10] Davydycheva S., Druskin V., Habashy T., “An efficient finite-difference scheme for electromagnetic logging in 3D anisotropic inhomogeneous media”, Geophysics, 68:5 (2003), 1525–1535 | DOI
[11] Engquist B., Majda A., “Absorbing boundary conditions for the numerical simulation of waves”, Math. Comp., 31:139 (1977), 629–651 | DOI | MR | Zbl
[12] Igel H., Mora P., Riollet B., “Anisotropic wave propagation through finite-difference grids”, Geophysics, 60:4 (1995), 1203–1216 | DOI
[13] Kachanov M., “Effective elastic properties of cracked solids: Critical review of some basic concepts”, Applied Mechanical Review, 45:8 (1992), 304–335 | DOI
[14] Levander A. R., “Fourth-order finite-difference P-SV seismograms”, Geophysics, 53:11 (1988), 1425–1436 | DOI
[15] Lisitsa V., Lys E., “Reflectionless truncation of target area for axially symmetric anisotropic elasticity”, J. of Computational and Applied Mathematics, 234:6 (2010), 1803–1809 | DOI | MR | Zbl
[16] Lisitsa V., Vishnevskiy D., “Lebedev scheme for the numerical simulation of wave ropagation in 3D anisotropic elasticity”, Geophysical Prospecting, 58:4 (2010), 619–635 | DOI
[17] Pissarenko D., Reshetova G. V., Tcheverda V. A., “3D finite-difference synthetic acoustic logging in cylindrical coordinates”, Geophysical Prospecting, 57:3 (2009), 367–377 | DOI
[18] Saenger E. H., Bohlen T., “Finite-difference modeling of viscoelastic and anisotropic wave propagation using the rotated staggered grid”, Geophysics, 69:2 (2004), 583–591 | DOI
[19] Saenger E. H., Gold N., Shapiro S. A., “Modeling the propagation of the elastic waves using a modified finite-difference grid”, Wave Motion, 31:1 (2000), 77–92 | DOI | MR | Zbl
[20] Schoenberg M., Muir F., “A calculus for finely layered anisotropic media”, Geophysics, 54:5 (1989), 581–589 | DOI | MR
[21] Sengupta M., Bachrach R., Bakulin A., “Relationship between velocity and anisotropy perturbations and anomalous stress field around salt bodies”, The Leading Edge, 28:5 (2009), 598–605 | DOI
[22] Thomsen L., “Weak elastic anisotropy”, Geophysics, 51:10 (1986), 1954–1966 | DOI
[23] Virieux J., “P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method”, Geophysics, 51:4 (1986), 889–901 | DOI