Minimizing the variance of estimate of mathematical expectation of a diffusion process functional by parametric transformation of the parabolic boundary value problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 141-153
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper is associated with finding the ways of reducing the variance of the estimate of mathematical expectation of the functional of a diffusion process moving in a domain with an absorbing boundary. The estimate of mathematical expectation of the functional is obtained using a numerical solution of stochastic differential equations (SDE's) by the Euler method. A formula of the limiting variance at decreasing the integration step in the Euler method is obtained. A method of reducing the variance value of the estimate based on transformation of the parabolic boundary value problem corresponding to the diffusion process is proposed. Some numerical results are presented.
@article{SJVM_2011_14_2_a2,
author = {S. A. Gusev},
title = {Minimizing the variance of estimate of mathematical expectation of a~diffusion process functional by parametric transformation of the parabolic boundary value problem},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {141--153},
year = {2011},
volume = {14},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/}
}
TY - JOUR AU - S. A. Gusev TI - Minimizing the variance of estimate of mathematical expectation of a diffusion process functional by parametric transformation of the parabolic boundary value problem JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 141 EP - 153 VL - 14 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/ LA - ru ID - SJVM_2011_14_2_a2 ER -
%0 Journal Article %A S. A. Gusev %T Minimizing the variance of estimate of mathematical expectation of a diffusion process functional by parametric transformation of the parabolic boundary value problem %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2011 %P 141-153 %V 14 %N 2 %U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/ %G ru %F SJVM_2011_14_2_a2
S. A. Gusev. Minimizing the variance of estimate of mathematical expectation of a diffusion process functional by parametric transformation of the parabolic boundary value problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 141-153. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/
[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967
[2] Uryasev S. P., Adaptivnye algoritmy stokhasticheskoi optimizatsii i teorii igr, Nauka, M., 1990 | MR
[3] Gusev S. A., “Otsenka proizvodnykh po parametram funktsionalov diffuzionnogo protsessa, dvizhuschegosya v oblasti s pogloschayuschei granitsei”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 11:4 (2008), 385–404 | Zbl
[4] Gobet E., Menozzi S., “Stopped diffusion process: boundary corrections and overshoot”, Stochastic Process. Appl., 120 (2010), 130–162 | DOI | MR | Zbl
[5] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl