Minimizing the variance of estimate of mathematical expectation of a~diffusion process functional by parametric transformation of the parabolic boundary value problem
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 141-153.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is associated with finding the ways of reducing the variance of the estimate of mathematical expectation of the functional of a diffusion process moving in a domain with an absorbing boundary. The estimate of mathematical expectation of the functional is obtained using a numerical solution of stochastic differential equations (SDE's) by the Euler method. A formula of the limiting variance at decreasing the integration step in the Euler method is obtained. A method of reducing the variance value of the estimate based on transformation of the parabolic boundary value problem corresponding to the diffusion process is proposed. Some numerical results are presented.
@article{SJVM_2011_14_2_a2,
     author = {S. A. Gusev},
     title = {Minimizing the variance of estimate of mathematical expectation of a~diffusion process functional by parametric transformation of the parabolic boundary value problem},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {141--153},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/}
}
TY  - JOUR
AU  - S. A. Gusev
TI  - Minimizing the variance of estimate of mathematical expectation of a~diffusion process functional by parametric transformation of the parabolic boundary value problem
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 141
EP  - 153
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/
LA  - ru
ID  - SJVM_2011_14_2_a2
ER  - 
%0 Journal Article
%A S. A. Gusev
%T Minimizing the variance of estimate of mathematical expectation of a~diffusion process functional by parametric transformation of the parabolic boundary value problem
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 141-153
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/
%G ru
%F SJVM_2011_14_2_a2
S. A. Gusev. Minimizing the variance of estimate of mathematical expectation of a~diffusion process functional by parametric transformation of the parabolic boundary value problem. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 141-153. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a2/

[1] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967

[2] Uryasev S. P., Adaptivnye algoritmy stokhasticheskoi optimizatsii i teorii igr, Nauka, M., 1990 | MR

[3] Gusev S. A., “Otsenka proizvodnykh po parametram funktsionalov diffuzionnogo protsessa, dvizhuschegosya v oblasti s pogloschayuschei granitsei”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 11:4 (2008), 385–404 | Zbl

[4] Gobet E., Menozzi S., “Stopped diffusion process: boundary corrections and overshoot”, Stochastic Process. Appl., 120 (2010), 130–162 | DOI | MR | Zbl

[5] Gikhman I. I., Skorokhod A. V., Stokhasticheskie differentsialnye uravneniya, Naukova dumka, Kiev, 1968 | MR | Zbl