Enumerative problems solution for single-transition serial sequences with an adjacent series heights increment bounded from above
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 119-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, sets of $n$-valued finite serial sequences are investigated. The sequences consist of two serial subsequences as follows. A sequence begins with an increasing subsequence and ends with a decreasing subsequence or vice versa. The structure of such sequences is determined by restrictions on the number of series, the series lengths, and the series heights. For sets of sequences, whose difference between heights of the adjacent series does not exceed a certain given value, the algorithms that assign smaller numbers to lexicographically lower sequences and smaller numbers to lexicographically higher sequences have been developed.
@article{SJVM_2011_14_2_a0,
     author = {V. A. Amelkin},
     title = {Enumerative problems solution for single-transition serial sequences with an adjacent series heights increment bounded from above},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {119--130},
     publisher = {mathdoc},
     volume = {14},
     number = {2},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a0/}
}
TY  - JOUR
AU  - V. A. Amelkin
TI  - Enumerative problems solution for single-transition serial sequences with an adjacent series heights increment bounded from above
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 119
EP  - 130
VL  - 14
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a0/
LA  - ru
ID  - SJVM_2011_14_2_a0
ER  - 
%0 Journal Article
%A V. A. Amelkin
%T Enumerative problems solution for single-transition serial sequences with an adjacent series heights increment bounded from above
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 119-130
%V 14
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a0/
%G ru
%F SJVM_2011_14_2_a0
V. A. Amelkin. Enumerative problems solution for single-transition serial sequences with an adjacent series heights increment bounded from above. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 2, pp. 119-130. http://geodesic.mathdoc.fr/item/SJVM_2011_14_2_a0/

[1] Amelkin V. A., Perechislitelnye zadachi seriinykh posledovatelnostei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008

[2] Amelkin V. A., “Numeratsiya neubyvayuschikh i nevozrastayuschikh seriinykh posledovatelnostei”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 12:4 (2009), 389–401