Analysis of a difference scheme for a singular perturbation Cauchy problem on refined grids
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 47-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Cauchy problem for a singular perturbation second-order ordinary differential equation is considered. It is proved that the upwind difference scheme on a grid proposed by Shishkin is uniformly convergent. The grid is well known only in application to a boundary value problem. The results of some numerical experiments are discussed.
@article{SJVM_2011_14_1_a4,
     author = {A. I. Zadorin and S. V. Tikhovskaya},
     title = {Analysis of a~difference scheme for a~singular perturbation {Cauchy} problem on refined grids},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {47--57},
     year = {2011},
     volume = {14},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a4/}
}
TY  - JOUR
AU  - A. I. Zadorin
AU  - S. V. Tikhovskaya
TI  - Analysis of a difference scheme for a singular perturbation Cauchy problem on refined grids
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 47
EP  - 57
VL  - 14
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a4/
LA  - ru
ID  - SJVM_2011_14_1_a4
ER  - 
%0 Journal Article
%A A. I. Zadorin
%A S. V. Tikhovskaya
%T Analysis of a difference scheme for a singular perturbation Cauchy problem on refined grids
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 47-57
%V 14
%N 1
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a4/
%G ru
%F SJVM_2011_14_1_a4
A. I. Zadorin; S. V. Tikhovskaya. Analysis of a difference scheme for a singular perturbation Cauchy problem on refined grids. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 47-57. http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a4/

[1] Bakhvalov N. S., “K optimizatsii metodov resheniya kraevykh zadach pri nalichii pogranichnogo sloya”, Zhurn. vychisl. matem. i mat. fiziki, 9:4 (1969), 841–890

[2] Ilin A. M., “Raznostnaya skhema dlya differentsialnogo uravneniya s malym parametrom pri starshei proizvodnoi”, Matematicheskie zametki, 6:2 (1969), 237–248 | MR | Zbl

[3] Shishkin G. I., Setochnye approksimatsii singulyarno vozmuschennykh ellipticheskikh i parabolicheskikh uravnenii, Izd-vo UrO RAN, Ekaterinburg, 1992

[4] Kellog R. B., Tsan A., “Analysis of some difference approximations for a singular perturbation problem without turning points”, Mathematics of computation, 32:144 (1978), 1025–1039 | DOI | MR | Zbl

[5] Miller J. J. H., O'Riordan E., Shishkin G. I., Fitted Numerical Methods for Singular Perturbation Problems. Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions, World Scientific, Singapore, 1996 | MR

[6] Dulan E., Miller D., Shilders U., Ravnomernye chislennye metody resheniya zadach s pogranichnym sloem, Mir, M., 1983 | MR

[7] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1983 | MR