Reconstruction of vector fields and their singularities from ray transforms
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 29-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, numerical methods for reconstruction of the singular support of a vector field from its known longitudinal and (or) transverse ray transforms are proposed. Apart from a modification for the Vainberg operator, we use integral operators of angular moments and back projections as well as differential operators of tensor analysis for solving the problem. Results of numerical simulation for reconstructing discontinuous vector fields and with discontinuities in the derivatives are presented. Visualization of their singular support is shown.
@article{SJVM_2011_14_1_a3,
     author = {E. Yu. Derevtsov and V. V. Pickalov},
     title = {Reconstruction of vector fields and their singularities from ray transforms},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {29--46},
     publisher = {mathdoc},
     volume = {14},
     number = {1},
     year = {2011},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a3/}
}
TY  - JOUR
AU  - E. Yu. Derevtsov
AU  - V. V. Pickalov
TI  - Reconstruction of vector fields and their singularities from ray transforms
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2011
SP  - 29
EP  - 46
VL  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a3/
LA  - ru
ID  - SJVM_2011_14_1_a3
ER  - 
%0 Journal Article
%A E. Yu. Derevtsov
%A V. V. Pickalov
%T Reconstruction of vector fields and their singularities from ray transforms
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2011
%P 29-46
%V 14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a3/
%G ru
%F SJVM_2011_14_1_a3
E. Yu. Derevtsov; V. V. Pickalov. Reconstruction of vector fields and their singularities from ray transforms. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 29-46. http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a3/

[1] Gorelik A. G., Sterlyadkin V. V., “Doplerovskaya tomografiya v radiolokatsionnoi meteorologii”, Izv. AN SSSR. Fizika atmosfery i okeana, 26:1 (1990), 47–54

[2] Poluektov N. P., Efremov N. P., “New tomographic approach for deconvolution of ion velocity and temperature profiles in a plasma centrifuge”, Appl. Phys. (D), 31:8 (1998), 988–995

[3] Balandin A. L., Ono Y., “Tomographic determination of plasma velocity with the use of ion Doppler spectroscopy”, Eur. Phys. J. (D), 17:3 (2001), 337–344 | MR

[4] Koslover R., McWilliams R., “Measurement of multidimensional ion velocity distributions by optical tomography”, Rev. Sci. Instrum., 57:10 (1986), 2441–2448 | DOI

[5] Kinsey J. L., “Fourier transform Doppler spectroscopy: A new means of obtaining velocity – angle distributions in scattering experiments”, J. Chem. Phys., 66:6 (1977), 2560–2565 | DOI

[6] Basser P. J., “Relationships between diffusion tensor and $q$-space MRI”, Magn. Reson. Med., 47:2 (2002), 392–397 | DOI

[7] Efremov N. P., Poluektov N. P., Kharchenko V. N., “Tomography of ion and atom velocities in plasmas”, JQSRT, 53:6 (1995), 723–728

[8] Juhlin S. P., “Doppler tomography”, Proc. 15th Annual Intern. Conf. of the IEEE EMBS, 1993, 212–213

[9] Defrise M., Gullberg G. T., 3D-reconstruction of tensors and vectors, Technical Report No LBNL-54936, LBNL, Berkeley, 2005

[10] Derevtsov E. Yu., Kashina I. G., “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sib. zhurn. vychisl. matematiki, 5:3 (2002), 233–254 | Zbl

[11] Derevtsov E. Yu., Kashina I. G., “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sib. zhurn. industrialnoi matematiki, 5:1(9) (2002), 39–62 | MR | Zbl

[12] Derevtsov E. Yu., “An approach to direct reconstruction of a solenoidal part in vector and tensor tomography problems”, J. Inverse Ill-Posed Problems, 13:3 (2005), 213–246 | DOI | MR | Zbl

[13] Pikalov V. V., Likhachev A. V., “Primenenie metoda Gershberga–Papulisa v trekhmernoi doplerovskoi tomografii”, Vychisl. metody i programmirovanie, 5:2 (2004), 146–153

[14] Pikalov V. V., Melnikova T. S., Tomografiya plazmy, Nauka, Novosibirsk, 1995

[15] Boiko V. M., Orishich A. M., Pavlov A. A., Pikalov V. V., Metody opticheskoi diagnostiki v aerofizicheskom eksperimente, Izd-vo NGU, Novosibirsk, 2009 | Zbl

[16] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, GIFML, M., 1962

[17] Gelfand I. M., Goncharov A. B., “Vosstanovlenie finitnoi funktsii, iskhodya iz ee integralov po pryamym, peresekayuschim dannoe mnozhestvo tochek v prostranstve”, DAN SSSR, 290:5 (1986), 1037–1040 | MR

[18] Palamodov V. P., “Nekotorye singulyarnye zadachi tomografii. Matematicheskie problemy tomografii”, Voprosy kibernetiki, 157, eds. I. M. Gelfand, S. G. Gindikin, M., 1990, 132–140 | MR | Zbl

[19] Derevtsov E. Yu., “Nekotorye podkhody k zadache vizualizatsii singulyarnogo nositelya skalyarnykh, vektornykh i tenzornykh polei po tomograficheskim dannym”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 632–646 | MR

[20] Vainberg E. I., Kazak I. A., Faingoiz M. L., “X-ray computerized back projection tomography with filtration by double differentiation. Procedure and information features”, Soviet J. Nondest. Test, 21 (1985), 106–113

[21] Faridani A., Keinert F., Natterer F., Ritman E. L., Smith K. T., “Local and global tomography”, Signal Process, IMA Vol. Math. Appl., 23, Springer-Verlag, New York, 1990, 241–255 | MR

[22] Faridani A., Ritman E. L., Smith K. T., “Local tomography”, SIAM J. Appl. Math., 52:2 (1992), 459–484 | DOI | MR | Zbl

[23] Faridani A., Finch D. V., Ritman E. L., Smith K. T., “Local tomography, II”, SIAM J. Appl. Math., 57:4 (1997), 1095–1127 | DOI | MR | Zbl

[24] Louis A. K., Maass P., “Contour reconstruction in 3-D x-ray CT”, IEEE Trans. Med. Imag., 12:4 (1993), 764–769 | DOI | MR

[25] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, GIFML, M., 1962

[26] Anikonov D. S., “Ispolzovanie osobennostei resheniya uravneniya perenosa v rentgenovskoi tomografii”, Dokl. RAN, 335:6 (1994), 702–704 | MR | Zbl

[27] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000

[28] Anikonov D. S., “Spetsialnaya zadacha integralnoi geometrii”, Dokl. RAN, 415:1 (2007), 7–9 | MR | Zbl

[29] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR | Zbl

[30] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya, ONTI, Gos. tekhniko-teoreticheskoe izd-vo, Leningrad–Moskva, 1934

[31] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR | Zbl

[32] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl