@article{SJVM_2011_14_1_a3,
author = {E. Yu. Derevtsov and V. V. Pickalov},
title = {Reconstruction of vector fields and their singularities from ray transforms},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {29--46},
year = {2011},
volume = {14},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a3/}
}
TY - JOUR AU - E. Yu. Derevtsov AU - V. V. Pickalov TI - Reconstruction of vector fields and their singularities from ray transforms JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2011 SP - 29 EP - 46 VL - 14 IS - 1 UR - http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a3/ LA - ru ID - SJVM_2011_14_1_a3 ER -
E. Yu. Derevtsov; V. V. Pickalov. Reconstruction of vector fields and their singularities from ray transforms. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 14 (2011) no. 1, pp. 29-46. http://geodesic.mathdoc.fr/item/SJVM_2011_14_1_a3/
[1] Gorelik A. G., Sterlyadkin V. V., “Doplerovskaya tomografiya v radiolokatsionnoi meteorologii”, Izv. AN SSSR. Fizika atmosfery i okeana, 26:1 (1990), 47–54
[2] Poluektov N. P., Efremov N. P., “New tomographic approach for deconvolution of ion velocity and temperature profiles in a plasma centrifuge”, Appl. Phys. (D), 31:8 (1998), 988–995
[3] Balandin A. L., Ono Y., “Tomographic determination of plasma velocity with the use of ion Doppler spectroscopy”, Eur. Phys. J. (D), 17:3 (2001), 337–344 | MR
[4] Koslover R., McWilliams R., “Measurement of multidimensional ion velocity distributions by optical tomography”, Rev. Sci. Instrum., 57:10 (1986), 2441–2448 | DOI
[5] Kinsey J. L., “Fourier transform Doppler spectroscopy: A new means of obtaining velocity – angle distributions in scattering experiments”, J. Chem. Phys., 66:6 (1977), 2560–2565 | DOI
[6] Basser P. J., “Relationships between diffusion tensor and $q$-space MRI”, Magn. Reson. Med., 47:2 (2002), 392–397 | DOI
[7] Efremov N. P., Poluektov N. P., Kharchenko V. N., “Tomography of ion and atom velocities in plasmas”, JQSRT, 53:6 (1995), 723–728
[8] Juhlin S. P., “Doppler tomography”, Proc. 15th Annual Intern. Conf. of the IEEE EMBS, 1993, 212–213
[9] Defrise M., Gullberg G. T., 3D-reconstruction of tensors and vectors, Technical Report No LBNL-54936, LBNL, Berkeley, 2005
[10] Derevtsov E. Yu., Kashina I. G., “Chislennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov”, Sib. zhurn. vychisl. matematiki, 5:3 (2002), 233–254 | Zbl
[11] Derevtsov E. Yu., Kashina I. G., “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sib. zhurn. industrialnoi matematiki, 5:1(9) (2002), 39–62 | MR | Zbl
[12] Derevtsov E. Yu., “An approach to direct reconstruction of a solenoidal part in vector and tensor tomography problems”, J. Inverse Ill-Posed Problems, 13:3 (2005), 213–246 | DOI | MR | Zbl
[13] Pikalov V. V., Likhachev A. V., “Primenenie metoda Gershberga–Papulisa v trekhmernoi doplerovskoi tomografii”, Vychisl. metody i programmirovanie, 5:2 (2004), 146–153
[14] Pikalov V. V., Melnikova T. S., Tomografiya plazmy, Nauka, Novosibirsk, 1995
[15] Boiko V. M., Orishich A. M., Pavlov A. A., Pikalov V. V., Metody opticheskoi diagnostiki v aerofizicheskom eksperimente, Izd-vo NGU, Novosibirsk, 2009 | Zbl
[16] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, GIFML, M., 1962
[17] Gelfand I. M., Goncharov A. B., “Vosstanovlenie finitnoi funktsii, iskhodya iz ee integralov po pryamym, peresekayuschim dannoe mnozhestvo tochek v prostranstve”, DAN SSSR, 290:5 (1986), 1037–1040 | MR
[18] Palamodov V. P., “Nekotorye singulyarnye zadachi tomografii. Matematicheskie problemy tomografii”, Voprosy kibernetiki, 157, eds. I. M. Gelfand, S. G. Gindikin, M., 1990, 132–140 | MR | Zbl
[19] Derevtsov E. Yu., “Nekotorye podkhody k zadache vizualizatsii singulyarnogo nositelya skalyarnykh, vektornykh i tenzornykh polei po tomograficheskim dannym”, Sibirskie elektronnye matematicheskie izvestiya, 5 (2008), 632–646 | MR
[20] Vainberg E. I., Kazak I. A., Faingoiz M. L., “X-ray computerized back projection tomography with filtration by double differentiation. Procedure and information features”, Soviet J. Nondest. Test, 21 (1985), 106–113
[21] Faridani A., Keinert F., Natterer F., Ritman E. L., Smith K. T., “Local and global tomography”, Signal Process, IMA Vol. Math. Appl., 23, Springer-Verlag, New York, 1990, 241–255 | MR
[22] Faridani A., Ritman E. L., Smith K. T., “Local tomography”, SIAM J. Appl. Math., 52:2 (1992), 459–484 | DOI | MR | Zbl
[23] Faridani A., Finch D. V., Ritman E. L., Smith K. T., “Local tomography, II”, SIAM J. Appl. Math., 57:4 (1997), 1095–1127 | DOI | MR | Zbl
[24] Louis A. K., Maass P., “Contour reconstruction in 3-D x-ray CT”, IEEE Trans. Med. Imag., 12:4 (1993), 764–769 | DOI | MR
[25] Mikhlin S. G., Mnogomernye singulyarnye integraly i integralnye uravneniya, GIFML, M., 1962
[26] Anikonov D. S., “Ispolzovanie osobennostei resheniya uravneniya perenosa v rentgenovskoi tomografii”, Dokl. RAN, 335:6 (1994), 702–704 | MR | Zbl
[27] Anikonov D. S., Kovtanyuk A. E., Prokhorov I. V., Ispolzovanie uravneniya perenosa v tomografii, Logos, M., 2000
[28] Anikonov D. S., “Spetsialnaya zadacha integralnoi geometrii”, Dokl. RAN, 415:1 (2007), 7–9 | MR | Zbl
[29] Sharafutdinov V. A., Integralnaya geometriya tenzornykh polei, Nauka, Novosibirsk, 1993 | MR | Zbl
[30] Kochin N. E., Vektornoe ischislenie i nachala tenzornogo ischisleniya, ONTI, Gos. tekhniko-teoreticheskoe izd-vo, Leningrad–Moskva, 1934
[31] Weyl H., “The method of orthogonal projection in potential theory”, Duke Math. J., 7 (1940), 411–444 | DOI | MR | Zbl
[32] Sobolev S. L., “Ob odnoi novoi zadache matematicheskoi fiziki”, Izv. AN SSSR. Ser. matem., 18:1 (1954), 3–50 | MR | Zbl