Voir la notice de l'article provenant de la source Math-Net.Ru
@article{SJVM_2010_13_4_a6, author = {V. V. Smelov and A. S. Popov}, title = {An analog to {Gaussian} quadrature implemented on a~specific trigonometric basis}, journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki}, pages = {439--450}, publisher = {mathdoc}, volume = {13}, number = {4}, year = {2010}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a6/} }
TY - JOUR AU - V. V. Smelov AU - A. S. Popov TI - An analog to Gaussian quadrature implemented on a~specific trigonometric basis JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2010 SP - 439 EP - 450 VL - 13 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a6/ LA - ru ID - SJVM_2010_13_4_a6 ER -
V. V. Smelov; A. S. Popov. An analog to Gaussian quadrature implemented on a~specific trigonometric basis. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 439-450. http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a6/
[1] Krylov V. I., Priblizhennoe vychislenie integralov, Nauka, M., 1967 | MR
[2] Krylov V. I., Shulgina L. T., Spravochnaya kniga po chislennomu integrirovaniyu, Nauka, M., 1966 | MR
[3] Smelov V. V., “Gauss type quadratures based on trigonometric bases”, Russ. J. Numer. Anal. Math. Modelling, 23:3 (2008), 265–281 | DOI | MR | Zbl
[4] Smelov V. V., Zadachi Shturma–Liuvillya i razlozheniya funktsii v bystroskhodyaschiesya ryady, Izd-vo SO RAN, Novosibirsk, 2000
[5] Smelov V. V., “O predstavlenii kusochno-gladkikh funktsii bystroskhodyaschimisya trigonometricheskimi ryadami”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 2:4 (1999), 385–394 | Zbl
[6] Smelov V. V., “Effective approximation of piecewise smooth functions by their expansion into fast convergent series in terms of functions formed by eigenfunctions of Sturm–Liouville problems”, Russ. J. Numer. Anal. Math. Modelling, 19:5 (2004), 449–465 | DOI | MR | Zbl
[7] Smelov V. V., “O priblizhennom reshenii smeshannoi zadachi dlya parabolicheskogo uravneniya s ispolzovaniem spetsificheskogo bazisa funktsii”, Sib. zhurn. industrialnoi matematiki (Novosibirsk), 8:1(21) (2005), 117–128 | MR
[8] Smelov V. V., “Ob obobschennom reshenii dvumernoi ellipticheskoi zadachi s kusochno-postoyannymi koeffitsientami na osnove rasschepleniya differentsialnogo operatora i ispolzovaniya spetsificheskikh bazisnykh funktsii”, Sib. zhurn. vychisl. matematiki (Novosibirsk), 6:1 (2003), 59–72 | Zbl
[9] Vladimirov V. S., “Matematicheskie zadachi odnoskorostnoi teorii perenosa chastits”, Tr. Matematicheskogo instituta im. V. A. Steklova AN SSSR, 61, Izd-vo AN SSSR, M., 1961, 3–158 | MR
[10] Suetin P. K., Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1976 | MR