A step-by-step method with Laguerre functions for solving time-dependent problems
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 413-422.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a step-by-step modification of a well-known approach of Mikhailenko and Konyukh for solving dynamic problems is proposed. The approach is based on the Laguerre transform with respect to time. In this modification the Laguerre transform is applied to a sequence of finite time intervals. The solution obtained at the end of a time interval is used as the initial data for problem solving on the next time interval. The method is illustrated by the examples of a harmonic oscillator problem and a 1D wave equation. The accuracy and stability of the method are analyzed. This approach allows obtaining a solution of high accuracy on large time intervals.
@article{SJVM_2010_13_4_a4,
     author = {G. V. Demidov and V. N. Martynov},
     title = {A step-by-step method with {Laguerre} functions for solving time-dependent problems},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {413--422},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a4/}
}
TY  - JOUR
AU  - G. V. Demidov
AU  - V. N. Martynov
TI  - A step-by-step method with Laguerre functions for solving time-dependent problems
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 413
EP  - 422
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a4/
LA  - ru
ID  - SJVM_2010_13_4_a4
ER  - 
%0 Journal Article
%A G. V. Demidov
%A V. N. Martynov
%T A step-by-step method with Laguerre functions for solving time-dependent problems
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 413-422
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a4/
%G ru
%F SJVM_2010_13_4_a4
G. V. Demidov; V. N. Martynov. A step-by-step method with Laguerre functions for solving time-dependent problems. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 413-422. http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a4/

[1] Konyukh G. V., Mikhailenko B. G., “Primenenie integralnogo preobrazovaniya Lagerra pri reshenii dinamicheskikh zadach seismiki”, Tr. IVMiMG. Matematicheskoe modelirovanie v geofizike, 5, 1998, 106–123

[2] Mikhaylenko B. G., “Spectral Laguerre method for the approximate solution of nime dependent problems”, App. Math. Lett., 12 (1999), 105–110 | MR

[3] Konyukh G. V., Mikhailov A. A., Mikhailenko B. G., “Chislennoe modelirovanie seismicheskikh polei v vyazkouprugikh sredakh na osnove spektralnogo metoda Lagerra”, Matematicheskoe modelirovanie (Moskva), 13:2 (2001), 61–70 | MR | Zbl

[4] Konyukh G. V., Mikhailov A. A., Mikhaylenko B. G., “Application of the integral Laguerre transforms for forward seismic modeling”, J. of Computational Acoustics, 9:3 (2001), 1–19 | MR

[5] Mikhailov A. A., Mikhaylenko B. G., Reshetova G. V., “Numerical viscoelastic modeling by the spectral Laguerre method”, J. of Geophysical Prospecting, 51 (2003), 37–48 | DOI

[6] Mikhailov A. A., Mikhaylenko B. G., Reshetova G. V., “Numerical modeling of transient seismic fields in viscoelastic media based on the Laguerre spectral method”, Pure and Applied Geophysics, 160 (2003), 1207–1224 | DOI

[7] Mikhailenko B. G., Reshetova G. V., “Chislenno-analiticheskii metod resheniya zadachi o rasprostranenii seismicheskikh i akusto-gravitatsionnykh voln dlya neodnorodnoi modeli Zemlya–Atmosfera”, Sib. zhurn. vychisl. matematiki (RAN, Sib. otd-nie), 9:1 (2006), 37–46 | Zbl

[8] Mikhailenko B. G., Reshetova G. V., “Matematicheskoe modelirovanie rasprostraneniya seismicheskikh i akusto-gravitatsionnykh voln dlya neodnorodnoi modeli Zemlya–Atmosfera”, Geologiya i geofizika, 47:5 (2006), 547–556

[9] M. Abramovits, I. Stigan, Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979 | MR