On the existence and stability of cycles in five-dimensional models of gene networks
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 403-411.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sufficient conditions for the existence and stability of closed trajectories in five-dimensional nonlinear dynamical systems which model gene networks with negative feedbacks.
@article{SJVM_2010_13_4_a3,
     author = {V. P. Golubyatnikov and I. V. Golubyatnikov and V. A. Likhoshvai},
     title = {On the existence and stability of cycles in five-dimensional models of gene networks},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {403--411},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a3/}
}
TY  - JOUR
AU  - V. P. Golubyatnikov
AU  - I. V. Golubyatnikov
AU  - V. A. Likhoshvai
TI  - On the existence and stability of cycles in five-dimensional models of gene networks
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 403
EP  - 411
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a3/
LA  - ru
ID  - SJVM_2010_13_4_a3
ER  - 
%0 Journal Article
%A V. P. Golubyatnikov
%A I. V. Golubyatnikov
%A V. A. Likhoshvai
%T On the existence and stability of cycles in five-dimensional models of gene networks
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 403-411
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a3/
%G ru
%F SJVM_2010_13_4_a3
V. P. Golubyatnikov; I. V. Golubyatnikov; V. A. Likhoshvai. On the existence and stability of cycles in five-dimensional models of gene networks. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 403-411. http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a3/

[1] Likhoshvai V. A., Golubyatnikov V. P., Demidenko G. V., Evdokimov A. A., Fadeev S. I., “Teoriya gennykh setei”, Sistemnaya kompyuternaya biologiya. Integratsionnye proekty, 14, eds. N. A. Kolchanov, C. S. Goncharov, SO RAN, Novosibirsk, 2008, 395–480

[2] Golubyatnikov V. P., Likhoshvai V. A., Volokitin E. P., Gaidov Yu. A., Osipov A. F., “Periodic trajectories and Andronov–Hopf bifurcations in models of gene networks”, Bioinformatics of Genome Regulation and Structure, v. II, Springer Science, Business Media Inc., 2006, 405–414

[3] Golubyatnikov V. P., Kleschev A. G., Klescheva K. A., Kudryavtseva A. V., “Issledovanie fazovykh portretov trekhmernykh modelei gennykh setei”, Sibirskii zhurn. industrialnoi matematiki, 9:1 (2006), 75–84 | MR

[4] Gaidov Yu. A., Golubyatnikov V. P., “O nekotorykh dinamicheskikh sistemakh, modeliruyuschikh nesimmetrichnye gennye seti”, Vestnik NGU. Seriya matematicheskaya, 7:2 (2007), 8–17

[5] Volokitin E. P., Treskov S. A., “Bifurkatsiya Andronova–Khopfa v modeli gipoteticheskikh gennykh setei”, Sibirskii zhurn. industrialnoi matematiki, 8:1 (2005), 30–40 | MR

[6] Gaidov Yu. A., “Ob ustoichivosti periodicheskikh traektorii v nekotorykh modelyakh gennykh setei”, Sibirskii zhurn. industrialnoi matematiki, 11:1 (2008), 57–62 | MR

[7] Hastings S., Tyson J., Webster D., “Existence of periodic solutions for negative feedback cellular control systems”, J. of Diff. Equations, 25 (1977), 39–64 | DOI | MR | Zbl

[8] Likhoshvai V. A., Matushkin Yu. G., Fadeev S. I., “Zadachi teorii funktsionirovaniya gennykh setei”, Sibirskii zhurn. industrialnoi matematiki, 6:2 (2003), 64–80 | MR | Zbl

[9] Golubyatnikov V. P., Gaidov Yu. A., Kleshchev A. G., Volokitin E. P., “Modeling of asymmetric gene networks functioning with different types of regulation”, Biophysics, 51:1 (2006), 61–65 | DOI

[10] Smith R. A., “Orbital stability for ordinary differential equations”, J. of Diff. Equations, 69 (1987), 265–287 | DOI | MR | Zbl

[11] Leonov G. A., “Ob ustoichivosti fazovykh sistem”, Sibirskii matem. zhurn., 15:1 (1974), 49–60 | MR | Zbl

[12] Prasolov V. V., Zadachi i teoremy lineinoi algebry, Nauka, M., 1996 | Zbl