Algoritms for enumeration of single-transition serial sequences
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 361-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

Sets of $n$-valued single-transition serial sequences consisting of two serial subsequences (an increasing one and a decreasing one) determined by constraints on the number of series and on their lengths and heights are considered. Enumeration problems for sets of finite sequences in which the difference in height between the neighboring series is not less than some given value are solved. Algorithms that assign smaller numbers to the lexicographically lower-order sequences and smaller numbers to the lexicographically higher-order sequences are obtained.
@article{SJVM_2010_13_4_a0,
     author = {V. A. Amelkin},
     title = {Algoritms for enumeration of single-transition serial sequences},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {361--373},
     publisher = {mathdoc},
     volume = {13},
     number = {4},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a0/}
}
TY  - JOUR
AU  - V. A. Amelkin
TI  - Algoritms for enumeration of single-transition serial sequences
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 361
EP  - 373
VL  - 13
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a0/
LA  - ru
ID  - SJVM_2010_13_4_a0
ER  - 
%0 Journal Article
%A V. A. Amelkin
%T Algoritms for enumeration of single-transition serial sequences
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 361-373
%V 13
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a0/
%G ru
%F SJVM_2010_13_4_a0
V. A. Amelkin. Algoritms for enumeration of single-transition serial sequences. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 4, pp. 361-373. http://geodesic.mathdoc.fr/item/SJVM_2010_13_4_a0/

[1] Amelkin V. A., Perechislitelnye zadachi seriinykh posledovatelnostei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008

[2] Amelkin V. A., “Numeratsiya neubyvayuschikh i nevozrastayuschikh seriinykh posledovatelnostei”, Sib. zhurn. vychisl. matematiki. RAN. Sib. otd-nie (Novosibirsk), 12:4 (2009), 389–401

[3] Egorychev G. P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977 | MR | Zbl