Error estimates in the projection-difference method for a~hyperbolic-parabolic system of abstract differential equations
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 3, pp. 269-284.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Cauchy problem for a hyperbolic-parabolic system of abstract differential equations in a Hilbert space is considered that generalizes a number of linear coupled thermoelasticity problems. The energy error estimates for the projection-difference method as applied to the Cauchy problem are established without imposing any special conditions on the projection subspaces.
@article{SJVM_2010_13_3_a2,
     author = {S. E. Zhelezovskii},
     title = {Error estimates in the projection-difference method for a~hyperbolic-parabolic system of abstract differential equations},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {269--284},
     publisher = {mathdoc},
     volume = {13},
     number = {3},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a2/}
}
TY  - JOUR
AU  - S. E. Zhelezovskii
TI  - Error estimates in the projection-difference method for a~hyperbolic-parabolic system of abstract differential equations
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 269
EP  - 284
VL  - 13
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a2/
LA  - ru
ID  - SJVM_2010_13_3_a2
ER  - 
%0 Journal Article
%A S. E. Zhelezovskii
%T Error estimates in the projection-difference method for a~hyperbolic-parabolic system of abstract differential equations
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 269-284
%V 13
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a2/
%G ru
%F SJVM_2010_13_3_a2
S. E. Zhelezovskii. Error estimates in the projection-difference method for a~hyperbolic-parabolic system of abstract differential equations. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 3, pp. 269-284. http://geodesic.mathdoc.fr/item/SJVM_2010_13_3_a2/

[1] Zhelezovskii S. E., “O skhodimosti metoda Galerkina dlya svyazannykh zadach termouprugosti”, Zhurn. vychisl. matematiki i matem. fiziki, 46:8 (2006), 1462–1474 | MR

[2] Zhelezovskii S. E., “Otsenki skorosti skhodimosti proektsionno-raznostnogo metoda dlya giperbolicheskikh uravnenii”, Izv. vuzov. Matematika, 2002, no. 1, 21–30 | MR | Zbl

[3] Zhelezovskii S. E., “Otsenki pogreshnosti skhem proektsionno-raznostnogo metoda dlya abstraktnogo kvazilineinogo giperbolicheskogo uravneniya”, Matem. zametki, 80:1 (2006), 38–49 | MR | Zbl

[4] Smagin V. V., “Koertsitivnye otsenki pogreshnostei proektsionnogo i proektsionno-raznostnogo metodov dlya parabolicheskikh uravnenii”, Matem. sb., 185:11 (1994), 79–94 | MR | Zbl

[5] Smagin V. V., “Energeticheskie otsenki pogreshnosti proektsionno-raznostnogo metoda so skhemoi Kranka–Nikolson dlya parabolicheskikh uravnenii”, Sib. matem. zhurn., 42:3 (2001), 670–682 | MR | Zbl

[6] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., “O skorosti skhodimosti metoda Rote–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii”, Differents. uravneniya, 25:7 (1989), 1208–1219 | MR

[7] Lions Zh.-L., Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[8] Samarskii A. A., Teoriya raznostnykh skhem, 3-e izd., Nauka, M., 1989 | MR

[9] Samarskii A. A., Gulin A. V., Ustoichivost raznostnykh skhem, Nauka, M., 1973 | Zbl

[10] Novatskii V., Teoriya uprugosti, Mir, M., 1975 | MR

[11] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[12] Botsenyuk A. N., Pankov A. A., “Nekotorye stseplennye sistemy abstraktnykh differentsialnykh uravnenii tipa uravnenii termouprugosti”, Dokl. AN USSR. Ser. A, 1982, no. 10, 6–8 | MR | Zbl

[13] Botsenyuk A. N., “Regulyarnost reshenii svyazannykh sistem abstraktnykh differentsialnykh uravnenii tipa uravnenii termouprugosti”, Materialy 10 konferentsii molodykh uchenykh Instituta prikladnykh problem mekhaniki i matematiki AN USSR, Ch. 2, Lvov, 1984, 35–39; Деп. в ВИНИТИ 10.11.84, No 7197-84Деп.

[14] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., Voprosy suschestvovaniya i edinstvennosti resheniya odnoi neklassicheskoi sistemy differentsialnykh uravnenii, Dep. v VINITI 28.11.83, No 6302-83Dep., Saratovskii politekhn. institut, Saratov, 1983

[15] Zhelezovskii S. E., Kirichenko V. F., Krysko V. A., O suschestvovanii, edinstvennosti resheniya i skorosti skhodimosti metoda Bubnova–Galerkina dlya odnoi neklassicheskoi sistemy differentsialnykh uravnenii, Dep. v VINITI 26.11.85, No 8162-V85, Saratovskii politekhn. institut, Saratov, 1985

[16] Syarle F., Metod konechnykh elementov dlya ellipticheskikh zadach, Mir, M., 1980 | MR

[17] Zhelezovskii S. E., “Otsenka pogreshnosti metoda Galerkina dlya abstraktnogo evolyutsionnogo uravneniya vtorogo poryadka s negladkim svobodnym chlenom”, Differents. uravneniya, 40:7 (2004), 944–952 | MR | Zbl