Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 183-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

The numerical method for solving a tensor tomography problem of reconstructing a symmetric 2-tensor field, given in a unit circle, is offered. Potential and (or) solenoidal part of the desired field with fixed properties on the boundary are found from transverse and (or) longitudinal ray transforms, calculated along the straight lines crossing the support of the field. The solution is sought by means of the least-squares method with the use, as approximating sequence, of local bases, constructed on the basis of $B$-splines.
@article{SJVM_2010_13_2_a3,
     author = {I. E. Svetov and A. P. Polyakova},
     title = {Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on {LSM} with $B$-splines},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {183--199},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/}
}
TY  - JOUR
AU  - I. E. Svetov
AU  - A. P. Polyakova
TI  - Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 183
EP  - 199
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/
LA  - ru
ID  - SJVM_2010_13_2_a3
ER  - 
%0 Journal Article
%A I. E. Svetov
%A A. P. Polyakova
%T Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 183-199
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/
%G ru
%F SJVM_2010_13_2_a3
I. E. Svetov; A. P. Polyakova. Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 183-199. http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/

[1] Romanov V. G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984 | MR

[2] Romanov V. G., “Integralnaya geometriya na geodezicheskikh izotropnoi rimanovoi metriki”, DAN SSSR, 241:2 (1978), 290–293 | MR | Zbl

[3] Sharafutdinov V. A., Integral Geometry of Tensor Fields, VSP, Utrecht, 1994 | MR | Zbl

[4] Derevtsov E. Yu., Kleshchev A. G., Sharafutdinov V. A., “Numerical solution of the emission $2D$-tomography problem for a medium with absorption and refraction”, J. Inverse and Ill-Posed Problems, 7:1 (1999), 83–103 | DOI | MR | Zbl

[5] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S, “Ispolzovanie $B$-splainov v zadache emissionnoi $2D$-tomografii v refragiruyuschei srede”, Sibirskii zhurn. industrialnoi matematiki, 11:3(35) (2008), 45–60 | MR

[6] Derevtsov E. Yu., Kashina I. G., Priblizhennoe reshenie zadachi vektornoi tomografii s pomoschyu polinomialnykh bazisov, Preprint No 74, Institut matematiki im. S. L. Soboleva SO RAN, Novosibirsk, 2000

[7] Derevtsov E. Yu., Svetov I. E., Volkov Yu. S., Schuster T., “Numerical $B$-spline solution of emission and vector $2D$-tomography problems for media with absorbtion and refraction”, Proc. 2008 IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering SIBIRCON-08 (Novosibirsk Scientific Center, Novosibirsk, Russia, July 21–25), 2008, 212–217

[8] Derevtsov E. Yu., Kashina I. G., “Priblizhennoe reshenie zadachi rekonstruktsii tenzornogo polya vtoroi valentnosti s pomoschyu polinomialnykh bazisov”, Sibirskii zhurn. industrialnoi matem., 5:1(9) (2002), 39–62 | MR | Zbl

[9] Zavyalov Yu. S., Kvasov B. I., Miroshnichenko V. L., Metody splain-funktsii, Nauka, M., 1980 | MR

[10] Natterer F., Matematicheskie aspekty kompyuternoi tomografii, Mir, M., 1990 | MR | Zbl

[11] Derevtsov E. Yu., Dietz R., Louis A. K., Schuster T., “Influence of refraction to the accuracy of a solution for the $2D$-emission tomography problem”, J. Inverse and Ill-Posed Problems, 8:2 (2000), 161–191 | MR | Zbl

[12] K. Enslein, E. Relston, G. S. Uilf (red.), Statisticheskie metody dlya EVM, Nauka, M., 1986 | MR | Zbl