Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 183-199
Voir la notice de l'article provenant de la source Math-Net.Ru
The numerical method for solving a tensor tomography problem of reconstructing a symmetric 2-tensor field, given in a unit circle, is offered. Potential and (or) solenoidal part of the desired field with fixed properties on the boundary are found from transverse and (or) longitudinal ray transforms, calculated along the straight lines crossing the support of the field. The solution is sought by means of the least-squares method with the use, as approximating sequence, of local bases, constructed on the basis of $B$-splines.
@article{SJVM_2010_13_2_a3,
author = {I. E. Svetov and A. P. Polyakova},
title = {Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on {LSM} with $B$-splines},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {183--199},
publisher = {mathdoc},
volume = {13},
number = {2},
year = {2010},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/}
}
TY - JOUR AU - I. E. Svetov AU - A. P. Polyakova TI - Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2010 SP - 183 EP - 199 VL - 13 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/ LA - ru ID - SJVM_2010_13_2_a3 ER -
%0 Journal Article %A I. E. Svetov %A A. P. Polyakova %T Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2010 %P 183-199 %V 13 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/ %G ru %F SJVM_2010_13_2_a3
I. E. Svetov; A. P. Polyakova. Reconstruction of 2-tensor fields, given in a~unit circle, by their ray transforms based on LSM with $B$-splines. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 183-199. http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a3/