The wells problem for a~stationary equation of diffusion
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 123-142

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the wells problem for which non-local boundary conditions are given. It is shown that this problem is equivalent to a mixed formulated problem without wells. For such a statement, an error estimate of the mixed finite element method for the 2D case is studied.
@article{SJVM_2010_13_2_a0,
     author = {Yu. M. Laevsky},
     title = {The wells problem for a~stationary equation of diffusion},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {123--142},
     publisher = {mathdoc},
     volume = {13},
     number = {2},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a0/}
}
TY  - JOUR
AU  - Yu. M. Laevsky
TI  - The wells problem for a~stationary equation of diffusion
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 123
EP  - 142
VL  - 13
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a0/
LA  - ru
ID  - SJVM_2010_13_2_a0
ER  - 
%0 Journal Article
%A Yu. M. Laevsky
%T The wells problem for a~stationary equation of diffusion
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 123-142
%V 13
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a0/
%G ru
%F SJVM_2010_13_2_a0
Yu. M. Laevsky. The wells problem for a~stationary equation of diffusion. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 2, pp. 123-142. http://geodesic.mathdoc.fr/item/SJVM_2010_13_2_a0/