On detecting a~wavefront described by 2D eikonal equation, when velocity in a~medium depends on one spatial variable
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 1, pp. 67-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, a 2D eikonal equation $f_x^2+f_y^2=(ky+b)^{2\alpha}$ is considered. If its solution is found, then the relation $f(x,y)=C$ determines the location of a wavefront. However, finding such solutions is still an open question. In this paper, we propose to directly find a curve in the parametric form, corresponding to the wavefront, without solving the equation as it is.
@article{SJVM_2010_13_1_a5,
     author = {E. D. Moskalensky},
     title = {On detecting a~wavefront described by {2D} eikonal equation, when velocity in a~medium depends on one spatial variable},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {67--73},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a5/}
}
TY  - JOUR
AU  - E. D. Moskalensky
TI  - On detecting a~wavefront described by 2D eikonal equation, when velocity in a~medium depends on one spatial variable
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 67
EP  - 73
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a5/
LA  - ru
ID  - SJVM_2010_13_1_a5
ER  - 
%0 Journal Article
%A E. D. Moskalensky
%T On detecting a~wavefront described by 2D eikonal equation, when velocity in a~medium depends on one spatial variable
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 67-73
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a5/
%G ru
%F SJVM_2010_13_1_a5
E. D. Moskalensky. On detecting a~wavefront described by 2D eikonal equation, when velocity in a~medium depends on one spatial variable. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 1, pp. 67-73. http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a5/

[1] Kamke E., Spravochnik po differentsialnym uravneniyam v chastnykh proizvodnykh pervogo poryadka, Nauka, M., 1966 | Zbl

[2] Zaitsev V. F., Polyanin A. D., Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fiziko-matematicheskaya literatura, M., 2003 | Zbl

[3] Borovskikh A. V., “Dvumernoe uravnenie eikonala”, Sibirskii matem. zhurn., 47:5 (2006), 993–1018 | MR | Zbl

[4] Marchuk An. G., Chubarov L. B., Shokin Yu. I., Chislennoe modelirovanie voln tsunami, Nauka, Novosibirsk, 1983 | MR | Zbl

[5] Stepanov V. V., Kurs differentsialnykh uravnenii, Fizmatgiz, M., 1959