Application of non-conforming finite elements for solving problems of diffusion and advection
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 1, pp. 51-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

The object of this paper is non-conforming finite elements and non-conforming finite element schemes for solving the diffusion-advection equation. This investigation is aimed at finding new schemes for solving parabolic equations. The method of the study is a finite element method, variational-difference schemes, tests. Two types of schemes are examined: the one is obtained with the help of the Bubnov–Galerkin method from a poor problem definition (non-monotone scheme) and the other one is a monotone up-stream type scheme, obtained from an approximate poor problem definition with a special approximation of skew-symmetric terms.
@article{SJVM_2010_13_1_a4,
     author = {V. I. Kuzin and V. V. Kravtchenko},
     title = {Application of non-conforming finite elements for solving problems of diffusion and advection},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {51--65},
     publisher = {mathdoc},
     volume = {13},
     number = {1},
     year = {2010},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a4/}
}
TY  - JOUR
AU  - V. I. Kuzin
AU  - V. V. Kravtchenko
TI  - Application of non-conforming finite elements for solving problems of diffusion and advection
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2010
SP  - 51
EP  - 65
VL  - 13
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a4/
LA  - ru
ID  - SJVM_2010_13_1_a4
ER  - 
%0 Journal Article
%A V. I. Kuzin
%A V. V. Kravtchenko
%T Application of non-conforming finite elements for solving problems of diffusion and advection
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2010
%P 51-65
%V 13
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a4/
%G ru
%F SJVM_2010_13_1_a4
V. I. Kuzin; V. V. Kravtchenko. Application of non-conforming finite elements for solving problems of diffusion and advection. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 13 (2010) no. 1, pp. 51-65. http://geodesic.mathdoc.fr/item/SJVM_2010_13_1_a4/

[1] Crouzeix M., Raviart P. A., “Conforming and non-conforming finite element methods for solving the stationary Stokes equations”, R.A.I.R.O., Model. Math. Anal. Numer., 7 (1973), 33–76 | MR

[2] Hua B.-L., Thomasset F., “A noise-free finite element scheme for the two-layer shallow water equations”, Tellus A, 36:2 (1984), 157–165 | DOI | MR

[3] Kuzin V. I., Metod konechnykh elementov v modelirovanii okeanicheskikh protsessov, Izd-vo VTs SO AN SSSR, Novosibirsk, 1985

[4] Ladyzhenskaya O. A., Kraevye zadachi matematicheskoi fiziki, Nauka, M., 1973 | MR

[5] Marchuk G. I., Kuzin V. I., “On a combination of finite element and splitting-up methods in the solution of parabolic equations”, J. of Comput. Phys., 52:2 (1983), 237–272 | DOI | MR | Zbl

[6] Ikeda T., “Artificial viscosity in finite element approximations to the diffusion equation with drift terms”, Lecture Note in Num. Appl. Anal., 2, 1980, 59–78 | MR | Zbl

[7] Kikuchi F., Ushijima T., “On finite element method for convection dominated phenomena”, Math. Meth. Appl. Science, 4 (1982), 98–122 | DOI | MR | Zbl

[8] Fudjii H., Some Remarks on Finite Element Analysis of Time-dependent Field Problems. Theory and Practice in Finite Element Structural Analysis, University Tokyo Press, Tokyo, 1973