The Lagrange multipliers method for solving a~semicoercive model problem with friction
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 409-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

In model problems with friction, unconditional minimization of a nondifferentiable functional is reduced to conditional minimization of a differentiable functional. To solve the semicoercive problem obtained, we use a dual scheme based on a modified Lagrangian functional.
@article{SJVM_2009_12_4_a4,
     author = {N. N. Kushniruk and R. V. Namm},
     title = {The {Lagrange} multipliers method for solving a~semicoercive model problem with friction},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {409--420},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a4/}
}
TY  - JOUR
AU  - N. N. Kushniruk
AU  - R. V. Namm
TI  - The Lagrange multipliers method for solving a~semicoercive model problem with friction
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 409
EP  - 420
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a4/
LA  - ru
ID  - SJVM_2009_12_4_a4
ER  - 
%0 Journal Article
%A N. N. Kushniruk
%A R. V. Namm
%T The Lagrange multipliers method for solving a~semicoercive model problem with friction
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 409-420
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a4/
%G ru
%F SJVM_2009_12_4_a4
N. N. Kushniruk; R. V. Namm. The Lagrange multipliers method for solving a~semicoercive model problem with friction. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 409-420. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a4/

[1] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[2] Vikhtenko E. M., Kushniruk N. N., Namm R. V., “Ob odnom podkhode k resheniyu polukoertsitivnoi zadachi s treniem”, Tr. XIV Baikalskoi Mezhdunarodnoi shkoly-seminara “Metody optimizatsii i ikh prilozheniya”. Tom 1. Matematicheskoe programmirovanie, 2008, 280–286

[3] Glavachek I., Gaslinger Ya., Nechas I., Lovishek Ya., Reshenie variatsionnykh neravenstv v mekhanike, Mir, M., 1986 | MR

[4] Podgaev A. G., “O teoremakh edinstvennosti v zadache minimizatsii odnogo nedifferentsiruemogo funktsionala”, Dalnevostochnyi matem. zhurn., 1 (2000), 28–37

[5] Namm R. V., Podgaev A. G., “O $W^2_2$ regulyarnosti reshenii polukoertsitivnykh variatsionnykh neravenstv”, Dalnevostochnyi matem. zhurn., 3:2 (2002), 210–215

[6] Golshtein E. G., Tretyakov N. V., Modifitsirovannye funktsii Lagranzha, Nauka, M., 1989 | MR

[7] Grossman K., Kaplan A. A., Nelineinoe programmirovanie na osnove bezuslovnoi minimizatsii, Nauka, Novosibirsk, 1981 | Zbl

[8] Vu G., Namm R. V., Sachkov S. A., “Iteratsionnyi metod poiska sedlovoi tochki dlya polukoertsitivnoi zadachi Sinorini, osnovannyi na modifitsirovannom funktsionale Lagranzha”, Zhurn. vychisl. matem. i mat. fiziki, 46:1 (2006), 26–36 | MR | Zbl

[9] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Mir, M., 1980