An eigenvalue problem for a symmetric Toeplitz matrix
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 403-407
Cet article a éte moissonné depuis la source Math-Net.Ru
An algorithm is developed which determines eigenvalues for a symmetric Toeplitz matrix. To this end, we substantiate the generality of eigenvalues problems for a symmetric Toeplitz matrix and for a persymmetric Hankel one. The latter is reduced to an eigenvalue problem for a persymmetric Jacobi matrix. In the even order case, the problem reduces to a Jacobi matrix with halved order.
@article{SJVM_2009_12_4_a3,
author = {Yu. I. Kuznetsov},
title = {An eigenvalue problem for a~symmetric {Toeplitz} matrix},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {403--407},
year = {2009},
volume = {12},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a3/}
}
Yu. I. Kuznetsov. An eigenvalue problem for a symmetric Toeplitz matrix. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 403-407. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a3/
[1] Tyrtyshnikov E. E., Teplitsevy matritsy, nekotorye ikh analogi i prilozheniya, OVM AN SSSR, M., 1989 | MR
[2] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999
[3] Kuznetsov Yu. I., “Klastery uzlovykh matrits”, Sib. zhurn. vychisl. matematiki RAN. Sib. otd-nie (Novosibirsk), 11:3 (2008), 341–346
[4] Kuznetsov Yu. I., “Clasters of point matrices”, Numerical Analysis and Applications (Pleiades Publishing LTd.), 1:3 (2008), 280–284
[5] Kuznetsov Yu. I., Modelirovanie kolebatelnykh sistem v prirodnykh sredakh, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008