An eigenvalue problem for a~symmetric Toeplitz matrix
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 403-407.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm is developed which determines eigenvalues for a symmetric Toeplitz matrix. To this end, we substantiate the generality of eigenvalues problems for a symmetric Toeplitz matrix and for a persymmetric Hankel one. The latter is reduced to an eigenvalue problem for a persymmetric Jacobi matrix. In the even order case, the problem reduces to a Jacobi matrix with halved order.
@article{SJVM_2009_12_4_a3,
     author = {Yu. I. Kuznetsov},
     title = {An eigenvalue problem for a~symmetric {Toeplitz} matrix},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {403--407},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a3/}
}
TY  - JOUR
AU  - Yu. I. Kuznetsov
TI  - An eigenvalue problem for a~symmetric Toeplitz matrix
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 403
EP  - 407
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a3/
LA  - ru
ID  - SJVM_2009_12_4_a3
ER  - 
%0 Journal Article
%A Yu. I. Kuznetsov
%T An eigenvalue problem for a~symmetric Toeplitz matrix
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 403-407
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a3/
%G ru
%F SJVM_2009_12_4_a3
Yu. I. Kuznetsov. An eigenvalue problem for a~symmetric Toeplitz matrix. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 403-407. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a3/

[1] Tyrtyshnikov E. E., Teplitsevy matritsy, nekotorye ikh analogi i prilozheniya, OVM AN SSSR, M., 1989 | MR

[2] Golub Dzh., Van Loun Ch., Matrichnye vychisleniya, Mir, M., 1999

[3] Kuznetsov Yu. I., “Klastery uzlovykh matrits”, Sib. zhurn. vychisl. matematiki RAN. Sib. otd-nie (Novosibirsk), 11:3 (2008), 341–346

[4] Kuznetsov Yu. I., “Clasters of point matrices”, Numerical Analysis and Applications (Pleiades Publishing LTd.), 1:3 (2008), 280–284

[5] Kuznetsov Yu. I., Modelirovanie kolebatelnykh sistem v prirodnykh sredakh, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008