Numeration of non-decreasing and non-increasing serial sequences
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 389-401.

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite sets of $n$-valued serial sequences are examined. Their structure is determined not only by restrictions on the number of series and series lengths, but also by restrictions on the series heights, which define the order number of series and their lengths, but also is limited to the series heights, by whose limitations the order of series of different heights is given. Solutions to numeration and generation problems are obtained for the following sets of sequences: non-decreasing and non-increasing sequences where the difference in heights of the neighboring series is either not smaller than a certain value or not greater than a certain value. Algorithms that assign smaller numbers to lexicographically lower sequences and smaller numbers to lexicographically higher sequences are developed.
@article{SJVM_2009_12_4_a2,
     author = {V. A. Amelkin},
     title = {Numeration of non-decreasing and non-increasing serial sequences},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {389--401},
     publisher = {mathdoc},
     volume = {12},
     number = {4},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a2/}
}
TY  - JOUR
AU  - V. A. Amelkin
TI  - Numeration of non-decreasing and non-increasing serial sequences
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 389
EP  - 401
VL  - 12
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a2/
LA  - ru
ID  - SJVM_2009_12_4_a2
ER  - 
%0 Journal Article
%A V. A. Amelkin
%T Numeration of non-decreasing and non-increasing serial sequences
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 389-401
%V 12
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a2/
%G ru
%F SJVM_2009_12_4_a2
V. A. Amelkin. Numeration of non-decreasing and non-increasing serial sequences. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 4, pp. 389-401. http://geodesic.mathdoc.fr/item/SJVM_2009_12_4_a2/

[1] Amelkin V. A., Perechislitelnye zadachi seriinykh posledovatelnostei, Izd-vo IVMiMG SO RAN, Novosibirsk, 2008

[2] Egorychev G. P., Integralnoe predstavlenie i vychislenie kombinatornykh summ, Nauka, Novosibirsk, 1977 | MR | Zbl

[3] Covet T. M., “Enumerative sourse encoding”, IEEE Trans. Inform. Theory, 19:1 (1973), 73–77 | DOI | MR

[4] Amelkin V. A., “Perechislitelnye zadachi orientirovannykh seriinykh posledovatelnostei”, Sib. zhurn. vychisl. matematiki RAN. Sib. otd-nie (Novosibirsk), 11:3 (2008), 271–282