A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 231-241 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The earlier developed method for a description of discontinuous functions is applied to the determination of parameters specifying fractal objects – dimension and geometrical coefficients for two classes of problems: the viscous “fingers” formation and the dendrites growth.
@article{SJVM_2009_12_2_a9,
     author = {O. N. Khatuntseva},
     title = {A~theoretical definition of dimension of simply connected fractal objects in problems of the viscous {\textquotedblleft}fingers{\textquotedblright} formation and the dendrites growth},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {231--241},
     year = {2009},
     volume = {12},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/}
}
TY  - JOUR
AU  - O. N. Khatuntseva
TI  - A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 231
EP  - 241
VL  - 12
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/
LA  - ru
ID  - SJVM_2009_12_2_a9
ER  - 
%0 Journal Article
%A O. N. Khatuntseva
%T A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 231-241
%V 12
%N 2
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/
%G ru
%F SJVM_2009_12_2_a9
O. N. Khatuntseva. A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/

[1] Khatuntseva O. N., “Metod matematicheskogo modelirovaniya funktsii v oblastyakh skachkoobraznykh izmenenii parametrov”, Aerodinamika, ed. R. N. Miroshin, “VVM”, SPb., 2004, 205–223

[2] Khatuntseva O. N., “Operatornyi podkhod k opisaniyu razryvnykh funktsii. Metody modelirovaniya dissipativnykh i gisterezisnykh yavlenii”, Matematicheskoe modelirovanie, 17:8 (2005), 111–120 | Zbl

[3] Feder E., Fraktaly, Mir, M., 1991 | MR

[4] Balkhanov V. K., Vvedenie v teoriyu fraktalnogo ischisleniya, Izd-vo Buryatskogo gos. un-ta, Ulan-Ude, 2001

[5] Noskov M. D., Malinovskii A. S., Zakk M.,Shvab A. I., “Modelirovanie rosta dendritov i chastichnykh razryadov v epoksidnoi smole”, ZhTF, 72:2 (2002), 121–128