A~theoretical definition of dimension of simply connected fractal objects in problems of the viscous ``fingers'' formation and the dendrites growth
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 231-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

The earlier developed method for a description of discontinuous functions is applied to the determination of parameters specifying fractal objects – dimension and geometrical coefficients for two classes of problems: the viscous “fingers” formation and the dendrites growth.
@article{SJVM_2009_12_2_a9,
     author = {O. N. Khatuntseva},
     title = {A~theoretical definition of dimension of simply connected fractal objects in problems of the viscous ``fingers'' formation and the dendrites growth},
     journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
     pages = {231--241},
     publisher = {mathdoc},
     volume = {12},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/}
}
TY  - JOUR
AU  - O. N. Khatuntseva
TI  - A~theoretical definition of dimension of simply connected fractal objects in problems of the viscous ``fingers'' formation and the dendrites growth
JO  - Sibirskij žurnal vyčislitelʹnoj matematiki
PY  - 2009
SP  - 231
EP  - 241
VL  - 12
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/
LA  - ru
ID  - SJVM_2009_12_2_a9
ER  - 
%0 Journal Article
%A O. N. Khatuntseva
%T A~theoretical definition of dimension of simply connected fractal objects in problems of the viscous ``fingers'' formation and the dendrites growth
%J Sibirskij žurnal vyčislitelʹnoj matematiki
%D 2009
%P 231-241
%V 12
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/
%G ru
%F SJVM_2009_12_2_a9
O. N. Khatuntseva. A~theoretical definition of dimension of simply connected fractal objects in problems of the viscous ``fingers'' formation and the dendrites growth. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/

[1] Khatuntseva O. N., “Metod matematicheskogo modelirovaniya funktsii v oblastyakh skachkoobraznykh izmenenii parametrov”, Aerodinamika, ed. R. N. Miroshin, “VVM”, SPb., 2004, 205–223

[2] Khatuntseva O. N., “Operatornyi podkhod k opisaniyu razryvnykh funktsii. Metody modelirovaniya dissipativnykh i gisterezisnykh yavlenii”, Matematicheskoe modelirovanie, 17:8 (2005), 111–120 | Zbl

[3] Feder E., Fraktaly, Mir, M., 1991 | MR

[4] Balkhanov V. K., Vvedenie v teoriyu fraktalnogo ischisleniya, Izd-vo Buryatskogo gos. un-ta, Ulan-Ude, 2001

[5] Noskov M. D., Malinovskii A. S., Zakk M.,Shvab A. I., “Modelirovanie rosta dendritov i chastichnykh razryadov v epoksidnoi smole”, ZhTF, 72:2 (2002), 121–128