A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth
Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 231-241
Cet article a éte moissonné depuis la source Math-Net.Ru
The earlier developed method for a description of discontinuous functions is applied to the determination of parameters specifying fractal objects – dimension and geometrical coefficients for two classes of problems: the viscous “fingers” formation and the dendrites growth.
@article{SJVM_2009_12_2_a9,
author = {O. N. Khatuntseva},
title = {A~theoretical definition of dimension of simply connected fractal objects in problems of the viscous {\textquotedblleft}fingers{\textquotedblright} formation and the dendrites growth},
journal = {Sibirskij \v{z}urnal vy\v{c}islitelʹnoj matematiki},
pages = {231--241},
year = {2009},
volume = {12},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/}
}
TY - JOUR AU - O. N. Khatuntseva TI - A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth JO - Sibirskij žurnal vyčislitelʹnoj matematiki PY - 2009 SP - 231 EP - 241 VL - 12 IS - 2 UR - http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/ LA - ru ID - SJVM_2009_12_2_a9 ER -
%0 Journal Article %A O. N. Khatuntseva %T A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth %J Sibirskij žurnal vyčislitelʹnoj matematiki %D 2009 %P 231-241 %V 12 %N 2 %U http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/ %G ru %F SJVM_2009_12_2_a9
O. N. Khatuntseva. A theoretical definition of dimension of simply connected fractal objects in problems of the viscous “fingers” formation and the dendrites growth. Sibirskij žurnal vyčislitelʹnoj matematiki, Tome 12 (2009) no. 2, pp. 231-241. http://geodesic.mathdoc.fr/item/SJVM_2009_12_2_a9/
[1] Khatuntseva O. N., “Metod matematicheskogo modelirovaniya funktsii v oblastyakh skachkoobraznykh izmenenii parametrov”, Aerodinamika, ed. R. N. Miroshin, “VVM”, SPb., 2004, 205–223
[2] Khatuntseva O. N., “Operatornyi podkhod k opisaniyu razryvnykh funktsii. Metody modelirovaniya dissipativnykh i gisterezisnykh yavlenii”, Matematicheskoe modelirovanie, 17:8 (2005), 111–120 | Zbl
[3] Feder E., Fraktaly, Mir, M., 1991 | MR
[4] Balkhanov V. K., Vvedenie v teoriyu fraktalnogo ischisleniya, Izd-vo Buryatskogo gos. un-ta, Ulan-Ude, 2001
[5] Noskov M. D., Malinovskii A. S., Zakk M.,Shvab A. I., “Modelirovanie rosta dendritov i chastichnykh razryadov v epoksidnoi smole”, ZhTF, 72:2 (2002), 121–128